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Executive Summary

Simulation of turbulent mixing and chemical processes in the near-field plume
and plume-vortex regimes has been successfully carded out recently using a reduced gas
phase kinetics mechanism which substantially decreased the computational cost. A
detailed mechanism including gas phase HOx, NOx, and SOx chemistry between the
aircraft exhaust and the ambient air in near-field aircraft plumes is compiled. A reduced
mechanism capturing the major chemical pathways is developed. Predictions by the
reduced mechanism are found to be in good agreement with those by the detailed
mechanism. With the reduced chemistry, the computer CPU time is saved by a factor of
more than 3.5 for the near-field plume modeling. Distributions of major chemical species
are obtained and analyzed. The computed sensitivities of major species with respect to
reaction step are deduced for identification of the dominant gas phase kinetic reaction
pathways in the jet plume.

Both the near field plume and the plume-vortex regimes were investigated using
advanced mixing models. In the near field, a stand -alone mixing model was used to
investigate the impact of turbulent mixing on the micro- and macro-scale mixing
processes using a reduced reaction kinetics model. The plume-vortex regime was
simulated using a large-eddy simulation model. Vortex plume behind Boeing 737 and
747 aircraft was simulated along with relevant kinetics. Many features of the computed

flow field show reasonable agreement with data. The entrainment of the engine plumes
into the wing tip vortices and also the partial detrainment of the plume were numerically
captured. The impact of fluid mechanics on the chemical processes was also studied.
Results show that there are significant differences between spatial and temporal

simulations especially in the predicted SO3 concentrations. This has important

implications for the prediction of sulfuric acid aerosols in the wake and many partly
explain the discrepancy between past numerical studies (that employed parabolic or
temporal approximations) and the measured data.

Finally to address the major uncertainty in the near-field plume modeling related
to the plume processing of sulfur compounds and advanced model was developed to
evaluate its impact on the chemical processes in the near wake. A comprehensive aerosol
model is developed and it is coupled with chemical kinetics and the axisymmetri¢
turbulent jet flow models. The integrated model is used to simulate microphysical
processes in the near-field jet plume, including sulfuric acid and water binary
homogeneous nucleation, coagulation, non-equilibrium heteromolecular condensation,
and sulfur-induced soot activation. The formation and evolution of aerosols are computed
and analyzed. The computed results show that a large number of ultra-fine (0.3--0.6 nm

in radius) volatile H2SO 4 -1-120 embryos are generated in the near-field plume. These
embryos further grow in size by self coagulation and condensation. Soot particles can be

activated by both heterogeneous nucleation and scavenging ofH2SO 4 -1-120 aerosols.

These activated soot particles can serve as water condensation nuclei for contrail
formation. Conditions under which ice contrails can form behind aircrafts are studied.

The sensitivities of the threshold temperature for contrail formation with respect to
aircraft propulsion efficiency, relative humidity, and ambient pressure are evaluated.
The computed aerosol properties for different extent of fuel sulfur conversion to S(VI)

(SO 3 and H2SO 4) in engine are examined and the results are found to be sensitive to this
conversion fraction.



1. PROBLEM DESCRIPTION

The projected increase in future aviation especially in heavy traffic flight
corridors has the potential for causing a major upper atmospheric perturbation. Recent
research has focused on the potential impact on the upper troposphere and on the lower
stratosphere due to exhaust emission from the proposed fleet of supersonic high-speed
civil transport (HSCT) and/or advanced subsonic transport (AST) operating in the
transatlantic and Pacific rim flight corridors (e.g., Brasseur et al., 1990, Beck et al., 1992;
Stolarski and Wesoky, 1995; Friedl, 1997). Emissions from individual aircraft are
initially highly localized in the engine plume wake and rapidly disperses in the far wake.
However, the chemical processes in the hot species-rich plume may lead to changes on
the global scale if it causes marked changes in the far field exhaust composition. This
concern, especially as related to the potential deployment of HSCT and/or AST fleets, has
led to many investigations focusing on the near field (characterized as the exhaust plume
and plume-wing-tip vortex interaction regimes) chemical processes. Gas phase chemical

processes due to NO,,, HO,, and SOx species and heterogeneous kinetics due to exhaust

aerosols and soot particles in the plume are being studied (Fahey et al., 1995a, 1995b;
Brown et al., 1996a, b; Weisenstein et al., 1993). Both measurements and numerical
studies in the near field indicate potentially significant impact on the atmosphere
depending upon the significance of both homogeneous and heterogeneous kinetics. In

particular, conversion of emitted NOx to inactive forms of nitrogen, plume processing of

sulfur and formation of ice in the plume have been the focus of many recent
investigations (Friedl, 1997).

The net effect of NO,, emission on ozone is known to be reduced if some of it is

converted to its less reactive form (via the hydrolysis of N_O s to HNO3). Near-field

modeling studies (Miake-Lye et al., 1993, 1994; Quackenbush et al., 1993) and

measurements (Fahey et al., 1995a) indicate that relatively small amounts of NOy is

deposited in the form of nitrous and nitric acid with the bulk remaining in the form of

NOx. Thus, both data and measurements suggest that there is only a minimal conversion

of emitted NO_ into other species in the near field plume. On the other hand, the sulfur

compounds in the near field plume are known to be significantly affected by the chemical
processes. Recent calculations (Miake-Lye et al., 1994, Brown et al., 1996a, d) and
experimental observations (Fahey et al., 1995b; Karcher and Fahey, 1997) suggest that

many small aerosol particles are formed when H2SO+(v) undergoes binary homogeneous

nucleation with water. The number of these particles is estimated to be orders of
magnitude larger than the emitted soot particles. Calculations (Miake-Lye et al., 1994)
suggests that the nucleation process is much more likely than heterogeneous condensation

of H2SO _ on soot particles. The resulting increase in overall aerosol surface area in the
plume has the potential for changing the exhaust composition in the far field wake and
thereby, impacting the global dynamics.

The major uncertainty is in the modeling of soot and aerosol particles in the
plume. For example, measurements (Fahey et al., 1995b) suggests that around 10% of the
fuel sulfur is converted to sulfates whereas models (Brown et al., 1996a, c) predict only
around 1-2 %. This discrepancy has been the focus of recent studies (e.g., Brown et al.,
1996a-d; Schumann et al., 1996; Karcher and Fahey, 1997) and is of fundamental interest
since the formation of large number of aerosol particles in the plume may lead to
significant global effects in the long term. For reliable estimates, physical processes that

involve gas-particle condensation, homogeneous binary nucleation of H:SO 4 -H_O

aerosols, condensation of H2SO 4 -HzO on soot particles, aerosol coagulation and soot



agglomeration,etc., all mustbe modeled.Although most of theseprocesseshave been
modeledin the past,either separatelyor together,thecoupling of theseprocessesalong
with the gasphasekinetics in a fluid dynamicsolver hasbeendifficult primarily dueto
thecomputationalcost.Both condensationaerosolsandcoagulationof aerosols require
that thenumberdensityandsizedistribution of the particlesbedeterminedasa function
of spaceandtime (dueto their dependenceon thelocalcompositionand thermodynamic
state).The computationalcost to track all the aerosolsizes is excessiveeven for 2D
steady state calculations (although, recently Brown et al., 1996a, d have begun doing
some calculations). Evaluating aerosol dynamics in an unsteady reacting environment by
using LES is impossible at present. Unsteady mixing effects on aerosol dynamics may be
important since condensation and coagulation processes could be modified if aerosol or
soot particles are entrained in local vortical structures containing large concentrations of

key species (e.g., OH, SO3,H20). Reliable predictions of plume processing of sulfur may

require taking all these issues into account.

The exorbitant cost of computing the details of aerosol dynamics appears to be the
main stumbling block in the study of heterogeneous kinetics in the near-field plume.
However, if the models used for condensation and coagulation can be reformulated so
that a significant reduction in computational cost is achieved without causing a major loss
of accuracy, then it would be feasible to address these processes within the context of
even an unsteady simulation of the near-field. The advantages of a computationally
efficient model for aerosol dynamics are obvious. In the present study, both

homogeneous and heterogeneous kinetics modeling issues have been addressed with the
view for application in large-scale 3D simulation methodology such as large-eddy
simulations.

This report summarizes the results obtained in this study. Most of the details are given in
the papers attached as Appendices. Here we briefly summarize the pertinent results.

2. SUMMARY OF RESULTS

Many past studies (Miake-Lye et al., 1993; 1994; Quackenbush et al., 1996;
Brown et al., 1996a) of the near field plume have employed a variant of the standard
plume code (SPF-II) called UNIWAKE. This code is a space-marching, parabolized

solver and employs the standard k - e turbulence model to obtain the steady state field.
The computational efficiency of this code is achieved by using a parabolic (2D) approach
and by modeling all chemical and fluid dynamic processes in the steady state limit. As a
result, physical time dependent processes that govern mixing and combustion processes
such as molecular diffusion, large-scale entrainment and small-scale turbulent mixing are
ignored (or modeled using eddy viscosity/diffusivity models). Thus, the importance (if
any) of the unsteady processes on the chemical processing in the plume could not be
addressed using this type of code.

To determine the impact of the time-dependent processes on plume dynamics, a
study was undertaken under this NASA AEAP program. Since computations that resolve
the unsteady processes are extremely expensive, new cost-effective methodologies had to
be developed and incorporated for this study.

The project had four primary objectives:

(1) to develop and validate reduced chemical kinetics models for near-field studies
(2) to evaluate micro- and macro-scale mixing effects in the plume regime
(3) to investigate the effects of mixing on chemical processes in the plume-vortex regime
(4) to investigate reduced (computationally efficient) models for heterogeneous kinetics



We haveachievedall of theabovenotedobjectivesandhaveobtainednew insight
into the fluid dynamic and chemical processesoccurring in the near field. The
investigation to develop reduced heterogeneous models is currently underway. However,
the complexity of the heterogeneous processes that must be included, the lack of detailed
data for comparison and the computational cost of doing baseline (i.e., conventional
discrete-nodal/sectional method) simulations has delayed the development effort.
Currently, we are including aerosol models into our codes and we expect to get some
results before the end of the current project. However, discrete-nodal/sectional method is
computationally too expensive for general purpose studies. To develop computationaUy
efficient aerosol dynamics models, we have identified two methodologies that show
potential for application within fluid dynamic solvers. However, the various issues that
must be addressed cannot be completed under the current program. In the following, we
briefly summarize the key results of the current research. More details are given in
Menon and Chen (1995), Menon and Wu (1998) Wu and Menon (1998a, 1998b), Wang
and Chert (1997).

2. I Reduced Kinetics Development

Reduced reaction kinetics are modified chemical reaction models that mimic

accurately all the critical features of a full (or detailed) reaction set. An obvious
advantage of reduced kinetics is that it provides a computationally affordable set of key
species that can be used in unsteady models and in large-eddy simulations (LES). Gas-
phase mechanisms appropriate for the engine exhaust plume in the upper troposphere and
lower stratosphere were compiled from literature. A 25-species, 47 reaction set used
earlier for the HSCT (Miake-Lye et al., 1993; Brown et al., 1996) was reduced to a 8-
species, 16 reaction set. Note that this approach does not just neglect the other reactions

and species. Rather, it modifies the reaction rates in the reduced set using sensitivity
analysis so that the resolved species production/destruction time scales reflect the impact
of the neglected species (which are assumed to be in quasi-equilibrium).

The dominant oxidation kinetic pathways are identified through sensitivity analysis of
major species with respect to gas phase reaction steps. The spatial distributions of major
chemical species in the near-field jet plume are computed and analyzed. The reduced
mechanism is developed which captures the major chemical pathways in the near-field jet
plume. Results obtained with the reduced chemistry show good agreement with those
predicted by the detailed chemistry. However, using the reduced chemistry has cut down
computer CPU time by a factor of more than 3.5 for the near-field simulation. Results
also show that the reduced mechanism captures the major pathways responsible for ozone
destruction very accurately and also predicts accurately all the species that were included
in the reduced set (Menon and Chen, 1995; Wang and Chen, 1997).

2. 2 Turbulent Mixing and Chemical Processes in the Plume Regime

The potential impact of engine exhaust gas on ambient ozone has been studied
using several numerical models with differ in their treatments of the mixing process
between the exhaust gas and the ambient air. These models include Perfectly-Stirred
Reactor (PSR), transient Well-Mixed Reactor (WMR), Partially-Stiffed-Reactor (PaSR),
joint scalar Probability Density Function (PDF) and the Linear-Eddy Mixing (LEM)
models. The last two methods, i.e., PDF and LEM (developed during this study for near-
field plume studies) are time dependent simulation methods that incorporate effects of
both micro- and macro-scale mixing. The PDF model is similar to the standard plume
model in terms of the fluid dynamics but it incorporates a Monte-Carlo stochastic



simulation for the joint scalarpdf. This allows proper incorporationof the effects of
turbulenceon the chemicalprocess.However,only the LEM approachincludesmicro-
scalemixing using physically consistentturbulent scaling rules and incorporates, in
addition,theeffectsof moleculardiffusion. Theresultsfor anexhaustplume of a typical
HSCT aircraft (Menon and Wu, 1998)showedthat comparedto predictions basedon
modelsthat do not include small-scalemixing and/ormoleculardiffusion effects, 30%
less 03 and 15% less NO x are depleted in the near field of the plume. This suggests that

local unmixedness can have an inhibiting effect on ozone depletion in the near-field
plume. Inclusion of the formation of condensed nitric acid on soot particles showed that

15% of the available NOx is converted into its inactive form but has negligible effect on

03 concentration. Competition between the gas phase H2SO _ formation and the H2SO 4

condensation on soot particles for the available SO 3 in the plume was found to depend

partly on the mixing process. Results (see Menon and Wu, 1998) show that for the single
plume case, the LEM results are quite similar to the earlier models that ignored or
modeled in an ad hoc manner, the mixing processes. This suggests that the macro (large)
scale entrainment process (included in various models) dominate the mixing process.
However, as shown in Wang and Chen (1997) and Menon and Wu (1997) there are

significant differences in the local details of the radical ( OH, SO 2, SO 3) distribution that is

likely to impact the heterogeneous kinetics related to sulfuric acid. Effects of unsteady

mixing on the aerosol and soot related chemical processes remains unresolved at this
time. Future study will address this particular issue.

2.3 LES of Reacting Plume-Vortex Interactions

The development of the reduced reaction mechanism provided a computationally
affordable model for LES. LES is probably the only method available to study unsteady
mixing and chemical processes during plume-vortex interaction. In LES, all scales larger
than the grid are resolved using a time- and space-accurate scheme and only the small
scales are modeled. We have developed a new localized dynamic subgrid model for the
subgrid kinetic energy to close the LES equations. Using this approach with a 15-species
reduced gas phase reaction mechanism (and the heterogeneous kinetics involving nitric
and sulfuric acid condensation on soot particles) a series of calculations were carried out

to determine (a) the dynamics of fluid mixing and entrainment of the engine exhaust into
the wing tip vortex, (b) the impact of mixing on the kinetics in the plume-vortex stage,
and, (c) the capability of temporal versus spatial LES to capture the entrainment and the
chemical processes.

The 3D LES was carried out using both temporal and spatial methods. In temporal
simulation, periodic boundary conditions are used in the streamwise direction and the
simulation captures a region of plume-vortex evolving in time which corresponds
spatially (via a velocity transformation) to a location that moves (with increasing time) in
the downstream direction. An advantage of this approach is that simulations can be used
to study the long time (far downstream) evolution of the plume-vortex interaction. This
approach is always used in the far field wake break up regimes (e.g., Lewellen and
LeweUen, 1997) and in global modeling. However, temporal simulations cannot capture
the inflow-outflow effects which may be important in the initial stages of the interaction
between the engine exhaust plume and the wingtip vortices. Of particular interest here is
the process of entrainment and detrainment (whereby portion of the plume is not
entrained into the vortex, as observed in flight). To investigate these issues, two
simulations using identical resolution and conditions were carded out using temporal and

spatial methods. For the latter method, proper inflow turbulence and non-reflective
outflow conditions were implemented. Reduced kinetics including the heterogeneous



processeswere studiedfor an initial period (approximately6-8 seconds)of the plume-
vortex interaction phase.Although thesesimulations are quite expensive, using an
optimizedmassivelyparallelcode,a spatialLES using 1.2million grid points and with
15 reactingspeciestakesapproximately2000 single-processorhours on a SGI Origin
2000 to simulate 5 flow-through times. This CPU requirement is not considered
exorbitantconsideringtheavailabilityof fastparallelsystems.

Resultsshowthat theentrainmentof theplumeinto thevortex in both theBoeing
737 and747 casesarequalitatively similar to the LIDAR measurements.Results also
showedthat for the 747 case,a portion of the engine plume is not entrainedinto the
vortex andif fact, appearsto split away(a form of detrainmentsimilar to that observed
earlier in flight). To evaluate the effect of modeling strategy on the mixing process
temporal (as is typically used by most researchers) and true spatial evaluation were
simulated under otherwise identical conditions. Although both temporal and spatial LES
look similar there are significant differences in the entrainment process and in the actual
distribution of typical species. The breakup of the plumes into two pieces (one that is
entrained and another that is left behind) is seen to occur more readily in the spatial case.

More importantly, estimated of the mass of NO and SO 3 entrained into the vortex core

show that the temporal simulation overpredicts the entrainment of NO by nearly 25% by

4 seconds while under predicting entrained SO_ by nearly 25%. Since SO 3 is formed due

to gas phase reactions and subsequently plays a major role in the formation of sulfuric
acid aerosols as well as in the formation of condensed sulfuric acid on soot particles, this
result has some significant implication when dealing with heterogeneous effects.

In summary, unsteady mixing and gas phase kinetics have been incorporated into
two different types of fluid dynamic solvers in the plume regime: the PDF and LEM
methods. Inclusion of aerosol dynamics into these codes using the discrete-sectional
method is currently underway. The plume-vortex interaction regime has been addressed
using dynamic subgrid model based LES. Inclusion of gas phase kinetics and simple
heterogeneous processes have been successfully carded out. Details of the mixing and
chemical processes have been extracted from these simulations and results point to the
importance of dealing with inflow/outflow processes when simulating the initial process
of plume-vortex interaction. The computational cost has been made reasonable using an
optimized parallel version of the 3D code.

2.4 Aerosol and Soot Dynamics Modeling in the Plume Regime

A detailed chemical mechanism between aircraft exhaust and ambient air in near-

field jet plumes was earlier developed and compiled. To further extend the chemistry
capability, a comprehensive aerosol model is developed to simulate micro physical

processes including sulfuric acid and water binary homogeneous nucleation, aerosol
coagulation, non-equilibrium heteromolecular condensation, and sulfur-induced soot
activation as water condensation nuclei. These micro physical processes are coupled with
gas-phase chemistry and used to study axisymmetric turbulent jet flow.

The modeling results indicate that a large number of subnanometer-sized volatile

H2SO 4 -1-120 embryos are generated in the near-field plume. These embryos grow in

size by condensation in the early jet regime and by self coagulation later. Soot particles
can be activated into water condensation nuclei in the jet plume for possible contrail
formation through both heterogeneous nucleation and scavenging of volatile

H2SO, _- ['[20 aerosols.



The gasphaseconversionof SO 2 to H2SO 4 is controlled by OH driven oxidation

and it is limited to less than 1%. However, the amount of H2SO 4 produced will increase

via fast reaction of SO 3 with H20 directly if SO3 emission due to fuel sulfur oxidation

to SO 3 in the engine is considered. Higher levels of H2SO 4 in turn result in more sulfate

aerosol embryos formed in the early jet stage, and also enhance condensation of

H2SO4and H20 onto the sulfate aerosols in this regime.

Consequently, SO 3 emission from the engine nozzle exit increases the

cumulative number density and surface area density of volatile sulfate aerosols. SO 3

emission also promotes chemical activation of soot particles with enhanced acid coating.

This suggests the need for measurements of the partitioning of sulfur species (SO 2 and

SO3) at the exhaust exit.

The threshold condition for ice contrail formation behind an aircraft depends on
the ambient pressure, the ambient relative humidity, the overall propulsion efficiency of
the aircraft, and the fuel properties such as the fuel hydrogen mass fraction and the
specific combustion heat. Higher values of ambient relative humidity or pressure
facilitate contrail formation. The threshold temperature is found sensitive to the overall
propulsion efficiency of the aircraft. The prediction of particle and species distribution in
the near-field plume can serve as input for the follow-on larger-scale model. The present
work also provides an estimate of the aerosol surface area density for subsequent
evaluation of heterogeneous oxidation mechanisms in the wake.
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ABSTRACT

Turbulent mixing and chemical reactions in the near field of an engine exhaust jet plume have been investigated

using a mixing model that explicitly incorporates both large- and small-scale turbulent mixing and the molecular

diffusion effects. A reduced reaction mechanism that accurately reproduces results of a detailed mechanism for

the lower stratosphere was used to simulate the exhaust plume dynamics of a typical high-speed civil transport

aircraft. This study shows that. compared to predictions based on models that do not include small-scale mixing

and/or molecular diffusion effects. 30% less O_ and 15% less NO, are depleted in the near field of the plume.

This suggests that the lack of local mixing can have an inhibiting effect on ozone depletion in the near-field

plume. Inclusion of heterogeneous kinetics involving the formation of nitric and sulfuric acid due to water

condensation on soot particles showed that 15% of the available NO, is converted into its inactive form but has

a negligible effect on O, concentration. This method also provides appropriate conditions for the plume-vortex

interaction stage where more complex chemistry, including heterogeneous kinetics, is likely to take place.

1. Introduction

The projected increase "in future aviation, especially
in heavily trafficked flight corridors, has the potential
for causing a major upper-atmospheric perturbation. Re-
cent research has focused on the potential impact on the
upper troposphere and on the lower stratosphere due to
exhaust emissions from the proposed fleets of super-

sonic high-speed civil transport (HSCT) and/or ad-
vanced subsonic transport (AST) operating in the trans-
atlantic and Pacific rim flight corridors (e.g., Brasseur
et at. 1990; Beck et al. 1992; Stolarski and Wesoky
1995; Friedl 1997). Emissions from individual aircraft

are initially highly localized in the engine plume wake
and rapidly dispersed in the far wake. However, the
chemical processes in the hot species-rich plume may
lead to changes on a global scale if this causes marked
changes in the far-field exhaust composition. This con-
cern, especially as related to the potential deployment

of HSCT and/or AST fleets, has led to many investi-
gations focusing on the near-field (characterized as the
exhaust plume and plume-wing tip vortex interaction
regimes) chemical processes. Gas phase chemical pro-
cesses due to NO, (NO, NO:), HO, (OH, HO 2, H20:),
and SO, (SO, SO:, SOs, HSOs, H2SO 3) species and
heterogeneous kinetics due to exhaust aerosols and soot
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30332-0150.
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particles in the plume are being studied (Fahey et al.
1995a,b; Brown et al. 1996a,b; Weisenstein et al. 1996).
Both measurements and numerical studies in the near

field indicate a potentially significant impact on the at-
mosphere, depending upon the significance of both ho-
mogeneous and heterogeneous kinetics. In particular, the
conversion of emitted NO, to inactive forms of nitrogen
and the impact of plume processing of sulfur due to the
formation of a large number of aerosol particles in the
plume have been the focus of many recent investigations
(Friedl 1997; Stolarski et at. 1995; WMO 1995).

The net effect of NO, emissions on ozone is known
to be reduced if some of it is converted to its less reactive

form (via the hydrolysis of N2Os to HNO3). Near-field

modeling studies (Miake-Lye et at. 1993, 1994; Quack-
enbush et at. 1993) and measurements (Fahey et al.
1995a) indicate that relatively small amounts of NO,
are deposited in the form of nitrous and nitric acid, with
the bulk remaining in the form of NO_. Thus, both data
and measurements suggest that there is only a minimal
conversion of emitted NO, into other species in the near-
field plume. On the other hand, the sulfur compounds

in the near-field plume are known to be significantly
affected by the chemical processes. Recent calculations
(Brown et al. 1996a,b) and experimental observations
(Fahey et al. 1995b; Karcher and Fahey 1997) suggest
that many small particles are formed in the plume via
binary homogeneous nucleation of sulfuric acid with
water. This increase in the overall aerosol surface area

in the plume has the potential for changing the exhaust

composition in the far-field wake.

© 1998 American Meteorological Society



640 JOURNAL OF APPLIED METEOROLOGY VOLUME 37

Many past studies (Miake-Lye et al. 1993, 1994;
Brown et al. 1996a) of the near-field plume have em-
ployed the standard plume code, SPF-II (Dash et al.
1990). SPF-il is a space-marching, axisymmetric solver
and employs the standard k - e turbulence model to
obtain the steady-state field. The computational effi-
ciency of this code is achieved by using an axisymmetric
approach and by modeling all chemical and fluid dy-
namic processes in the steady-state limit. Farther down-
stream, the evolution of the plume and its interaction
with the wingtip vortices are modeled using codes such
as UNIWAKE (Quackenbush et al. 1993, 1996) which

uses the output from the SPF-II calculation of the plume
as inflow conditions. UNIWAKE is a 3D unsteady, par-
abolized Navier-Stokes solver that incorporates the ef-
fect of turbulence using the second-order Reynolds
stress closure. Detailed gas phase kinetics have been
studied using this code. However, since all turbulent
scales are modeled by the closure (in both SPF-II and
UNIWAKE codes), many physical time-dependent pro-
cesses that govern mixing and combustion processes
(such as molecular diffusion and small-scale turbulent
mixing) are ignored (or modeled) in these codes. To
include the time-dependent physics, methods such as

large-eddy simulations (LES) can be employed. Al-
though LES has been successfully used in the far field
with limited (i.e., one-step chemistry) or no chemistry
modeling (e.g., Sykes et al. 1992; Lewellen and Lew-
ellen 1996), this approach is not practical for the near-
field studies due to the computational cost (orders of
magnitude larger than the parabolized methods) since a
large number of species must be simulated along with
the fluid dynamics. It would be computationally feasible
if a nonreacting LES flow field was used as a repre-
sentative fluid dynamic snapshot and the chemical re-
actions were simulated assuming no temporal depen-
dence between the fluid motion and the chemical pro-
cesses. However, this approach would not resolve the
importance (if any) of the unsteady mixing processes
on the chemical processing in the plume. In addition,
decoupled LES would not allow for proper transport of
the various species and would result in potentially in-
correct estimation of the chemical effect. Due to these

factors, it appears that no study has been reported on
the effects of unsteady turbulent mixing in the near-field
plume dynamics to date.

This paper describes an innovative simulation meth-
odology that allows proper characterization of the effect
of small-scale mixing processes on the chemical processes.
Inclusion of microscale mixing (missing in the earlier
plume studies) should result in a physically consistent sim-
ulation model and should provide a more accurate estimate
of the radical (e.g., OH, NO,, CO, SO,) reactions that are
highly dependent upon the mixing process. The model
described in this paper allows incorporation of detailed
kinetics (if warranted) without making the computational
cost unduly exorbitant. The key innovative feature of this
approach is that the microscale mixing processes (diffusion

and turbulent stirring) are explicitly simulated at their char-
acteristic timescales. Thus, turbulence--chemistry interac-
tion evolves in a consistent manner and its effects on the

scalar fields are obtained by statistically averaging over
the period of simulation. This is in contrast to steady-state
methods where all time-dependent processes are modeled.

The domain simulated in this study extends from the
engine nozzle exit to a point where the plume begins to
interact with the wingtip vortex. This domain spans a
distance of about 1 km and simulates the plume for about
1-2 s. Although this spatial and temporal extent is very
small relative to the overall scales for plume evolution,

this near-field region has been identified as the region
where significant chemical processing occurs (Brown et
al. 1996a). The engine exhaust conditions are chosen for
a representative HSCT aircraft flying at an altitude of 18
km along with appropriate ambient conditions (Brown et
al. 1996a; Miake-Lye et al. 1993). Both homogeneous
and heterogeneous kinetics in the near-field plume are
investigated. Gas phase kinetics involving HO,, NO,, and
SO, reactions are simulated using a reduced reaction
mechanism that significantly reduces the computational
cost without losing any accuracy in the prediction of the
important species. Condensation of water on emitted soot
particles and heterogeneous kinetics resulting in con-
densed HNO_ and H,SO4 formation on the surface of
condensed solid water are investigated in this study. More
detailed heterogeneous kinetics related to soot adsorption,
homogeneous binary nucleation of sulfur particles, vol-
atile H.,O-H.,SO, condensation on aerosol particles, and
aerosol coagulation (Brown et al. 1996a) are deferred for
a later study.

The unsteady mixing model demonstrated here is ex-
pected to provide a more accrurate estimate of chemical
processing in the species-rich plume when compared to
SPF-II. Thus, the outflow (time-averaged data) from this
model can provide a more accurate inflow condition for
the regime where the plume interacts with the wingtip
vortices. UNIWAKE calculations or LES of this regime
can employ this data. Currently, LES in the plume-vortex
regime is using this initialization approach (Menon and
Wu 1997).

2. Turbulent mixing models

In this study, the predictions using the new mixing mod-
el are compared to the predictions made using other well-
known mixing models. These models are described below.

a. Perfectly stirred reactorAvell-mixed reactor
(PSR/WMR )

This model is also sometimes called the "continuously
stirred" reactor or "box" model (e.g., Kee et al. 1989;
Karcher 1995; Danilin et al. 1994) and is the most com-
monly used model (in one variation or other) in aircraft
plume studies. In this model, there is a continuous mass
flow in and out of a constant volume reactor. Within this
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reactor, the scalar fields are assumed perfectly mixed so
that the rate of chemical processes is controlled by the

kinetics of the reaction mechanism and not by the mixing
process. The key parameter for the calculation is the res-
idence time in the reactor that determines the final reacted

state of the initially specified scalar fields. These models
cannot account for turbulent mixing by both the large and
the small scales and, therefore, cannot be used to study

turbulence effects, On the other hand, due to its compu-
tational efficiency, PSR/WMR codes can be used to in-
vestigate detailed multispecies reaction mechanisms very
quickly and to evaluate reduced kinetics. The mathematical
and computational aspects of this modeling approach are
given in numerous past studies (e.g., Kee et al. 1989;
Danilin et at. 1994) and, therefore, are omitted for brevity.

b. Probabilit)" density function (PDF) simulation
method

In this approach, the joint scalar PDF for the scalar
fields is solved by a transport equation using the Monte
Carlo technique. The mean flow is modeled by the Reyn-

olds stress closure with a downstream marching algo-
rithm (Wang and Chen 1997) as in the standard plume
codes (e.g., SPF-II). Although turbulence effects are
explicitly included in the direct estimation {i.e., without
any modeling) of the chemical source term, the turbulent
mixing is included using an ad hoc model and molecular
diffusion is ignored. This approach was used extensively
earlier (Menon and Chen 1995; Wang and Chen 1997)
to evaluate chemical kinetics. In this paper, we will
compare predictions using the new mixing model
against the PDF predictions.

c. The linear-eddy model (LEM) for scalar mixing

This model explicitly treats three physical processes:
1) large-scale turbulent entrainment, 2) small-scale tur-
bulent mixing, and 3) reaction--diffusion at the small
scales as independent processes that occur at their char-
acteristic times. In the following, a brief overview of
these processes are given. Subsequently, in section 2d,
more details pertaining to the actual implementation for
exhaust plume simulations are provided to identify the
new and innovative features of this modeling approach.

In LEM, the scalar reaction--diffusion equations are
solved on a 1D domain (and hence, called linear eddy)

using an explicit finite-difference scheme on a high-
resolution grid so that all the length scales (e.g., from
the integral scale L to the Kolmogorov scale r/) are
resolved. Thus, the reaction--diffusion evolution is con-

sidered exact and requires no closure. Although this
evolution is simulated in ID, this domain is not a phys-
ically fixed spatial domain. Rather, this domain repre-
sents an instantaneous statistical slice of the 3D tur-

bulent field at the chosen location. In the present for-
mulation, this slice is correlated (in a statistical sense)

to the radial extent of the exhaust plume, and the

LJmr uld_, _ _

FtG. I. Schematic of the computational domain.

*'mean" radial scalar field at a given axial location is
obtained by statistically averaging many realizations of
the 1D slice. The axial evolution of the exhaust plume
is simulated by convecting this ID slice downstream
using appropriate conservation of mass and momentum.

Simultaneous to (but independent of) the reaction-
diffusion simulation, turbulent mixing by the eddies in

the flow field is implemented using a stochastic Monte
Carlo simulation. This simulation models the effect of

turbulent eddies on the scalar field and is captured in
the model as a rearrangement of the scalar gradients
using a mapping process. This mapping process (de-
scribed in section 2d) occurs at discrete intervals and
can be physically correlated to the action of a turbulent
eddy on the scalar field. The eddy size, the eddy lo-
cation, and the mapping frequency (i.e., the turbulent
mixing timescale) are all determined using inertial range
scaling as applicable to full 3D turbulence. Thus, even
though the present model is ID, the effects of the high
Reynolds number 3D turbulence is included. It is this
particular feature that makes the present approach ca-
pable of capturing realistic 3D turbulence effects on the
reaction--diffusion processes within a ID formulation.

The ability of this model to capture realistic, high
Reynolds number flow features in reacting shear layers,
mixing layers, and jets has been reported in numerous
studies in the past (e.g., Kerstein 1987, 1989, 1990;
Menon et al. 1994). However, to study the engine ex-
haust plumes new features had to be developed and
incorporated. These new features are described in the
following section.

d. Application of LEM for jet plume studies

Figure 1 shows a schematic of an exhaust jet plume
and the discretization used in the ID radial LEM model.

To incorporate the axial spreading, we assume that the
exhaust plume is reasonably approximated by a round
free jet. Therefore, the well-known round-jet similarity
scaling law (Landau and Lifshitz 1959) is used to ap-
proximate jet spreading. The resulting decrease of the
mean jet velocity with the axial distance is given as
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.(o) [x -
= ). (l)

where u(O) is the axial jet velocity at the nozzle exit. d
is the nozzle diameter, and x. is the virtual origin of the
jet (see Fig. l). The value of the spreading rate c --
O.l I is estimated from experimental data for a free jet.
However. when there is a coflowing air (as in real cases
of the engine exhaust of a flying aircraft), the jet spread-
ing rate is decreased. This can be included by changing
the value of c. In Eq. (1), x,,Id is set equal to -5 so
that the mean flow similarity is satisfied for all x > O.
A constraint of the present study is that within the tur-
bulent zone. the radial variation of the mean axial ve-

locity u(x. r) is neglected and. thus, u(x) is given by Eq.
(I) for the entire jet plume. However. the turbulent mix-
ing process is radially dependent and is included in this
formulation. The axial evolution of the radial line is

related to the computational time t according to the re-
lation dx/dt = u(x). where x is the axial location.

1) MOLECULAR DIFFUSION

The small-scale molecular diffusion effects are ob-

tained by numerically solving the reaction-diffusion
equation:

OY..._A = vi.,W, 1 O
( prY_ Vj ), (2)

Ot p pr Or

within the 1D radial domain. Here. Y,, W_, V,, and ¢:, are.
respectively, the kth species mass fraction, molecular
weight, diffusion velocity, and molar production rate. Also.
p is the mixture density, and the kth species diffusion
velocity is determined using Fick's law of diffusion: V_ =
-(DT,/X_)OXffOr, where X, and D7 are, respectively, the
kth species mole fraction and diffusion coefficients. The
diffusion coefficients and the molar production rates for
each species are obtained from the general-purpose CHE-
MKIN library (e.g., Kee et at. 1989). Thus, differential
diffusion effects are also included.

The coordinate r in Eq. (2) is the local radial coor-
dinate that is discretized into cells of equal size Ar (see
Fig. l). The cell size is chosen to resolve the effects of
all turbulent eddies present in the flow, and the domain
is prescribed as Irl < L(x), where L(x) is the integral
length scale defined as L(x) = c(x - xo). This relation
for L(x) allows inclusion of the spreading rate in the
model without actually modeling the free jet. Thus, for
example, the increase in the jet volume (due to large-
scale entrainment) as a function of axial distance (which

increases the local integral length scale) is included ex-
plicitly into the model. In contrast, in the PDF method.
although the jet spreading rate can be enforced, the re-

sulting mixing process cannot be physically imple-
mented since mixing is modeled using an ad hoc model.

The reaction-diffusion equation (2) is solved using a
second-order, finite difference scheme (a sixth-order

scheme was also used; however, since all length scales
are resolved in the I D domain, it was determined that

the computationally efficient, second-order scheme was
sufficient) and time integrated at the local time step
using a second-order scheme. For stability, the time step
is determined by the minimum of the diffusion and
chemical time steps.

Note that in Eq. (2) the convection terms in the con-
ventional species equations (i.e., the terms u,OY, lOx,)are
not included because turbulent transport by the velocity
field is explicitly included as a distinct (and indepen-
dent) mechanism, as described below.

2) TURBULENT CONVECTION

The effect of turbulent stirring (or convection) is rep-
resented by stochastic mixing events that interrupt the
deterministic solution of the reaction--diffusion equa-
tions. Each mixing event (incorporated as a mapping
process) is interpreted as the action of a single eddy on
the scalar field. Three random quantities must be spec-

ified before implementing the mapping or rearrangement
event: i) the segment (or eddy) size, 2) the location of
the event, and 3) the frequency of the event. The eddy
size, L is determined randomly from a distribution (or
PDF) of eddy sizes, f(/ ) r/-_/" <-- L. The event location
is randomly chosen within the ID domain using another
distribution function, and the event rate (or time) is

determined using an analogy between fluid dispersion
and turbulent diffusivity (Kerstein 1987, 1989). Detailed

discussions of these parameters have been reported else-
where (Kerstein 1989; Menon et at. 1994). However,

new modifications were needed for plume studies and
are described below.

The eddy size /" is chosen randomly from a power-
law distribution f([) within the range r/ < /" < L,_(x;
r), where L=(x; r) is the largest eddy at the radial location
r. The PDF f(£ ) is determined from inertial range scal-
ing rules (see Kerstein 1989, for detailed analysis):

5 1 { [ I -s'3
f(:) = 3L,,(x; r---"--_[(L,,(x; r)lrl) ''_ - ll\_] "

(3)

in terms of L..(x; r). The local eddy size L._(x; r) is
related to L(x) by the relation

L(x), Irl < L(x)12,
L..(x; r) = [2[L(x) - Irl], Irl _ L(x)/2. (4)

Equation (4) ensures that the eddies taking part in the
mixing processes are not larger than the integral scale
and that the chosen eddies physically reside in the jet
shear layer. These requirements are consistent with ex-
perimental observations of large-scale entrainment and
small-scale turbulent mixing in jet flows. As noted ear-
lier, this information cannot be incorporated in the PSR/
WMR or PDF models.

Once the eddy size is chosen, the effect of this eddy
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TABLE I. Detailed gas phase reaction mechanisms for stratosphere (Miake-Lye el al. 19931. The mechanism contains 24 species.

No. Reactions A (cm' molecule ' s '1 , E/R (K)

1 O + O., + M:mO, + M

2 O + O,_O: + O:

3 H + O., + M _ HO: + M

4 H + O,=OH + O:
5 HO. + H =OH + OH

6 HO: + H _ H:O + O

7 HO: + H =_ H: + O.

8 OH + O=_H + O:

9 HO: + O_ OH + O:
I0 H:O: + 0 :=. OH + HO:

I I OH + HO- =_ H.,O ÷ O:

12 OH "*" O, _ HO. + O:

13 OH + OH _ H:O ÷ O
14 OH + OH + M _ H,O, + M

15 OH + H:O: _ H:O ÷ HO:

16 OH + H2 _ H:O + H

17 HO: + HO: :=¢ H:O: + O.

18 HO: + O, _ OH + 20:

19

20

21

23

24

25

26

27
28

29
30

31
32

33

34

35

36

37

38

N + O:=:,NO + O

N + NO=:_,N.. + O

NO "_ O + M => NO: + M

NO: _ O _ NO + O:
NO: + O "_" M _ NO, + M

NO, + O _ NO: + O.
H + NO.,=,OH + NO

NO "_ O, =_ NO: + O,
NO + HO: =:, NO: + OH

NO "¢'-NO, ::_ NO: + NO,
OH + NO + M:=¢, HONO + M

OH ÷ NO: ÷ M _ HNO, + M
OH + HONO :=_ H:O -,- NO:

OH + HNO, _ H:O + NO,

NO: + O, =:a NO, + O:

NO. + NO, + M _ N:O, + M

N:O, + M :=:, NO: + NO, ÷ M

HO: + NO_ ---_ OH + NO: + 02

HO: + NO, _ HNO3 + O:

OH -r NO_ =:_ HO: + NO:

39 SO + O: _ SO: + O

40 SO -4- O, _ SO: + O:

41 SO + NO., => SO, + NO

42 HSO_ + O., _ HO, + SO,

43 SO: + OH + M =_ HSO, + M

44 SO + OH _ SO2 + H

45 SO_ + H:O _ H:SO4

46 CO + OH ---_ CO, + H

O, reactions

3.00 x I0 :' -2.3 0

8.00 x 10 ': 0.0 2060

5.20 x 10 :" -I.6 0
1.40 × 10 "' 0 470

7.30 x I0 " 0 0

1.60 X 10 ': 0 0
6.50 x I0 ': 0 0

2.20 × I0 " 0 -120
3.00 × 10 " 0 -200

1.40 X 10 ': 0 2000

4.80 x 10 " 0 -250

1.60 X 10 ': 0 940

1.60 × 10 ': 0 940

6.60 x 10 :" -0.8 0

2.90 x I0 ': 0 160

5.50 × 10 ': 0 2000

2.30 X 10 " 0 -600

1.10 X 10 " 0 500

NO, reactions

1.50 × 10 " 0 3600

3.40 × I0 b, 0 0

4.70 x 10 :" -1.5 0

6.50 x 10 _-" 0 -120

8.10 x 10 :" -2 0

1.00 X I0 " 0 0

4.00 X I0- " 0 340

2.00 X 10 ': 0 1400

3.70 x 10 ': 0 -250

1.50 x 10 " 0 -170
1.90 x 10 --`4 -2.6 0

2.20 x 10 -': -3.2 0
1.80 x 10-" 0 390

7.20 x 10 '_ 0 -785

1.20 X I0 -'_ 0 2450

1.00 X 10 .'o -3.9 0

1.70 × l0 n -4.4 11 080

2.50 x I0 ': 0 0

1.90 × I0-': 0 0

2.30 X 10-" 0 0

SO, and CO, reactions

2.60 x I0-" 0 2400
3.60 X 10 _" 0 II00

1.40 X 10 ,t 0 0
1.30 X 10 -': 0 330

4.50 X 10-"' -3.3 0

8.60 x I0-" 0 0

1.20 X 10 -'s 0 0

1.60 X I0 -'_ 0 0

on the scalar field is implemented as a stochastic rear-

rangement event called block inversion (Kerstein 1987)
that mimics the effect of turbulent stirring on the scalar
field. Given the eddy size/'from f(f), the block inversion
process involves first, locating randomly the center of the
eddy within the radial line, and second, selecting the scalar
field(s) Y,(r, t) in an interval (r o - /'/2, ro + H2) and

replacing it with the scalar fields Y,(2r o - r, t). Physically,
inversion results in an instantaneous 180 ° rotation of the

scalar fields contained in the eddy. Although this instan-
taneous mapping is an artifact of the model (since turbulent
eddies take finite time to u'ansport the scalars), past studies

(Kerstein 1987, 1989) have shown that this discrete map-
ping does not cause significant errors since it occurs at the

local mixing time, and a multitude of these mappings is
ensemble averaged to obtain the statistically "mean" field.
Molecular Fickian diffusion subsequently smoothens the
sharp scalar gradients caused by these inversion events.

In this manner, both diffusion and stirring play competitive
and collaborative roles during the mixing process. Since
all the length scales are resolved, no special care is needed
during the diffusion step to deal with the sharp scalar
gradients caused by the turbulent stirring. In an axisym-
metric plume the cell volume must increase with radial
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TABLE 2. Reduced gas phase reaction mechanism for stratosphere
(Wang and Chen 1997). The mechanism contains 14 species.

No. Reaction mechanism

(I) 30, = 20,
(ID 2OH + O, = 202+ H:O
(lib 2OH = O.,+ H2
(IV) 20: + NO = NO: + O,
(V) OH + NO = HONO
(VI) OH + NO: = HNO3
(VII) 20: + SO: = O,+ SO,
(VIII) SO, + H20 = H2SO+
tlX) O, + CO = O: + CO:

Reduced reactionrates

a_ = `01 + `03 + o.)14 - w18 + w22 + ,a23 + ,025 - w26 - ,027
- ca28 + ,032 - to36 - 0737 + `041

o_, = `06 + `011 + w13 + (ol5 + ,016 + ,031 + w32

ah. = ,07 - co16

_, = ,021 - c022 - ce25 + ,026 + c027 + `028 + `031 - (o41

a_. = `029 - `031

a_,D = ,030 - ,032 + ,037

_), = (,,42
_., = ,,45

_x = _46

distance even though a constant cell size is used to
facilitate the mapping process. Thus, a direct imple-
mentation of the mapping would cause mass conser-
vation errors. Therefore, to conserve mass each mapping
from a cell "a" with volume Vo containing a scalar Ya
to a cell "b'" with volume V_ containing the scalar Y_,
the new (denoted by the superscript n) mapped scalar
value YT,becomes

(poL - mr_)vo + mY_v_
Y_ = (5)

(p,, - p,,)V,, + pbv,,

Here, po and Pb are, respectively, the mass density in
cells "a" and "b." This mapping conserves the scalar
fields even when the cells have different volumes.

The second element of the turbulent stirring process
requires locating the turbulent eddy within the local ID
domain. The location of the block is determined ran-

domly from a distribution function:

[ Irol ] ''2
G(Ir°l) = IL- ,)I' 0 --< IroI --< L(x). (6)

I) d

Finally, the frequency of the stirring event A [or the
timescaie for the mapping, _',,, = (AL)-'] is determined
based on inertial range scaling laws [details are given
in Kerstein (1987) and Menon et al. (1994) and, there-
fore, omitted here for brevity]:

r 1
4/3 5/3v /L(x)/ (L(x)/_)

x = L(x)----_[--_--j, , ] _- (n/L----_x)_5. (7)

3) DILATION PROCESS

The x dependence of the axial component u of the
mean velocity implies a mean flow and a radial spread-

ing due to entrainment. These features have to be in-
cluded to capture the global dynamics of the jet. Using
mass conservation, the radial mean motion can be de-

termined from the continuity equation:

u _v #u
- + .... . (8)
r dr Ox

Since u = u(x), Eq. (8) implies v -- -(rl2)Ou/Ox. To
incorporate the effect of the radial motion within the
ID formulation, the radial grid is stretched at a rate

prescribed by Eq. (8) without changing the scalar value
at each cell. Stretching is implemented deterministically
by means of dilation events at regular time intervals.
By incorporating radial flow, the algorithm conserves
total scalar flux corresponding to the quantity ¢ru(x)
_-z IrtpY_(x, r) dr in the simulation.

e. Chemical reaction mechanisms

The study of atmospheric chemistry within the mixing
zone requires incorporation of many species and their
associated chemical reactions. Depending upon the al-
titude, ambient and engine exhaust conditions as well
as both gas phase and heterogeneous chemical processes
have to be included. Although detailed kinetics can be
simulated using the LEM approach, the computational
cost can be quite significant. Therefore, using sensitivity
analysis (Menon and Chen 1995; Wang and Chen 1997),
a detailed mechanism (used earlier by Miake-Lye et al.
1993) of 24 species, 46 reactions for the lower strato-
sphere was reduced to a 14 species, 9 reactions mech-
anism. Tables 1 and 2 show, respectively, the detailed
and the reduced mechanisms. Reduction of the reaction

set is achieved by an implicit assumption that some of
the species are under quasi-equilibrium. However, the
accuracy of the reduced kinetics has been verified by
using WMR and PDF calculations (Menon and Chen
1995; Wang and Chen 1997). Since the reduced chem-
istry is computationally very efficient, it has been em-
ployed for the present studies.

Heterogeneous chemical processes in the near-field
exhaust plume can significantly modify chemical pro-
cessing in the plume. Processes such as homogeneous
binary nucleation, soot adsorption, condensation on aer-
osols, and aerosol coagulation will be incorporated in
a later study. Here, using simplified reactions occurring
on solid condensed water (on soot particles), the effect
of the following heterogeneous reactions on the gas
phase species distribution (in particular, NO,, SO,,
H2SO4) has been studied:

N:O_ + H_O(c) _ 2HNO_dc)

and

SO3 + H:O(c) _ H2SO,(c). (9)

Here, (c) indicates the condensed (solid) state. Conden-
sation of water on soot particles is possible because the
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temperature of the plume drops rapidly due to turbulent
mixing of the exhaust plume with the ambient air (which
is at a temperature of around 215 K). The reactions are
assumed to occur immediately after the gas species is
absorbed into the solid water. Thus, the heterogeneous
reaction rates are proportional to the surface area of the

condensed water and the flux of gas species N20 _ and
SO3 toward the condensed water surface. Once formed,
both nitric and sulfuric acid remain in the solid state.

Thus, evaporation of the condensed nitric acid is not
covered in this study. A sticking coefficient (which ac-
counts for the fact that a collision between the gas mol-

ml
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TABLE 3. Initial conditions for the near-field plume calculations for

the HSCT tBrown et a]. 1996aL

HSCT

Exhaust flow

condition Ambient condition

Temperature (K) 561 205.2

Velocity (m s- _) 620(450) 0.0
Pressure (arm) 0.0573 0.0573

Mole fraction

CO 2.4 Xl0 -_ 20 xl0 -a

CO= 3.2 x]0 -2 3.5 xl0-'
H 1.0 X 10 7 2.8 xl0 -:_

O 1.6 Xl0 -7 3.1 xl0 ,3

H2 1.0 ×10-*' 5.2 ×10 7

0: 0.159 0.2098
OH 1.0 Xl0 _ 2.8 xl0-"

HOz 9.9 Xl0 s 3.3 xl0 -_

H:O:t 2.4 Xl0 -s 2.1 xl0 -j2

H_O 3.0 Xl0 -2 4.8 xl0-*

N, 0.779 0.789
NO 4.3 Xl0-' 5.9 ×10-"

NO 2 4.8 ×10 -_ 4.3 xl0 -'°

HNO, 0.0 3.3 X 10 -'_
SO 0.0 0.0

SO: 6.9 × 10 -_' 0.0

SO_ 0.0 0.0
HSO, 0.0 0.0

H2SO , 0.0 0.0
O_ 0.0 2.5 x 10-*

ecule and condensed solid water may or may not result
in the capture of the gas molecule) of 0.1 is used to
represent the probability of gas being absorbed in solid
water after hitting the surface (Fukuta and Walter 1970).
The flux of gas species to the surface is determined using
gas kinetic theory. To model the droplet surface area
and water condensed on active nuclei, the active nuclei

distribution is divided into a number of groups. In each
group, the nuclei are assumed to have the same radius.
Based on experimental data for typical engine gas ex-
haust (Miake-Lye et al. 1994; Brown et al. 1996a), a
lognormal soot distribution is assumed. Water conden-
sation is modeled by a kinetic process of aerosol droplet
growth on preexisting nuclei particles and is based on
a model developed by Fukuta and Walter (1970) for
droplet growth by vapor diffusion.

In the current implementation, all particles are as-
sumed to travel with the mean fluid velocity, and dif-
fusion between particles is ignored. These simplifica-
tions are not necessary but are invoked here for com-
putational expediency. The soot particle size distribution
is divided into 11 groups. Thus, there are 11 more equa-
tions to solve with the source terms given by the kinetic
model. This is equivalent to having 11 more species in
every computational cell but, unlike the gas species,
these 11 groups only take part in the turbulent stirring
and dilation processes.

3. Numerical implementation

The numerical implementation of LEM is relatively
straightforward. For computational purposes, the radial
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": TABLE 4, Comparison of predicted mole fractions of NO and NO, along the jet centerline.

61 m 306 m 613 m 1128 m
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a solid
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_e area
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. radius.
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_onden-

t droplet 1

,sed on
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are as-
Jad dif-

..._plifica-
or com-

,.'ibution

NO (Brown et al. 1996a)

NO (spreading rate 0.011. present)

NO (spreading rate 0.055. present)

NO (spreading rate 0. II, present)
NO (Wang and Chen 1997)

NO: (Brown et al. 1996a)

NO: (spreading rate 0.01 I. present)

NO: (spreading rate 0.055, present)

NO: (spreading rate 0. ll. present)

NO: (Wang and Chen 1997)

2.87 x 10 _ 1.74 x I0 _ 8.06 x 10" 4.59 x 10 '

7.82 x 10 _ 1.41 x 10 _ 7,85 x 10 ' 4.13 x I0 '

7.77 x 10" 1.77 x 10 _ 8.92 x I0 ' 4.46 × 10 '

4.75 x 10 -_ 1.48 x I0 s 8.83 x I0 ' 4.43 x 10 "
-- 3.0 x 10 _ 1.6 x I0 -_' --

3.47 X 10 _ 2.53 × 10' 1.24 X 10 ' ?79 x 10 -_
8.39 x I0 7 1.68 x 10 ' 1.00 x I0 -_ 5.77 x IO-"

8.71 x I0 7 2.13 x 10 ' 1,15 X 10 ' 6.30 x I0"

5.28 x 10 _ 1.79 x 10 ' 1.13 X 10 ' 6.19 x 10 "

-- 3.1 x I0 ' 1.8 x 10 ' --

domain -L(x) <- • <- L(x) is discretized into cells small
enough to resolve the smallest eddy in the domain. Since

the range of eddies r/< [ < L(x) varies with the Reyn-
olds number, the resolution must be fine enough so that
grid effects are negligible for the entire domain of in-
terest. For example, at x/d = l0 a resolution of 2000
cells was sufficient to resolve all the local scales, while

at x/d = 1000 a resolution of 20 000 cells was required.
Although this resolution requirement appears excessive,
due to the ID nature of the simulation model, the entire

plume with 16 species can be simulated on a workstation
(SGI Power Indigo) in about 12 h.

On the ID domain, the reaction-diffusion equations
are solved deterministically at the (stability based) time
step. The reaction-diffusion evolution is interrupted by
the turbulent stirring process that occurs at a time in-
terval based on the event frequency [Eq. (7)]. The mean
flow advection is then implemented using the dilation
process to obtain the v velocity and the stretched grid
at the next downstream location. Reaction-diffusion and

turbulent stirring continues at the new axial location.

This process is continued until the downstream outflow
boundary is reached.

The main advantage of this method is that with proper
choices of the inflow and ambient conditions, the evo-
lution of the scalar fields (with and without chemical

reactions) in the jet plume can be obtained as a function
of radial location and time, that is, Y_ = Yk(r, t). Then
the time domain is transformed to an axial location to

obtain the spatial scalar field, Y_ = Yk(x, r). The spatially
resolved statistics of the fluctuating scalar fields are ob-
tained by averaging a large number (greater than 50) of

realizations (using different initial random seeds) of the
jet plume.

4. Results and discussion

To validate the present formulation, simulations of

free jets were first carried out. The effects of changing
the Reynolds number and the Schmidt number were
investigated and compared to experimental data. Sim-
ulations for Re = 5000 and 20 000 and for Sc = 0.7

(corresponding to air) and Sc = 600 (corresponding to

liquid) were carried out using the mixture fraction ap-
proach. Thus, the reaction-diffusion equation [Eq. (3)]
was replaced by a single equation for the mixture frac-
tion: O_/Ot = Dd:(,/Or". Here, (-(x, r) is the mixture frac-
tion and D is the diffusion coefficient.

Since the jet is evolving in the self-similar regime,
the mixture fraction field should also show self-simi-

larity. This is demonstrated in Fig. 2a, which shows the
mean mixture fraction radial profiles in the similarity
form _(x, r) = kg(rl)/; ¢ at various axial locations plotted
as a function of the scaled radial coordinate r/ = rl(x
- xo). Here, g(r/) is the similarity form of the mixture
fraction and X = (x - xo)ld. The figure shows that self-
similarity is achieved in the present calculation, and that

the result is consistent with experimental data (Dowling
1988). The radial profile of root-mean-square (rms) fluc-
tuation of mixture fraction, shown in Fig. 2b, also ex-
hibits self-similarity as expected. The occurrence of the

peak rms fluctuation, where the slope of the mean profile
is greatest, is a general feature in free jets and has been
reproduced by the present model. The model predictions

TABLE 5. Comparison of predicted temperature and species mole fractions at a fixed axial location.

e equa-
..i, kinetic

_ecies in

_pecies, I"

stirring

Present study Present study
Brown et al. with without

306 m (1996a) molecular diffusion molecular diffusion

Present study
with molecular diffusion

and heterogeneous reaction

.,latively ihe radial

Temp 229.7 K 213.9 K 213,9 K 217.2 K

OH 1.54 × 10 9 1.06 × 10 io 0.87 x 10 -m 1.29 x 10 -m

NO 1.74 x l0 -6 1.77 x l0 -6 1.04 × l0 -¢' 1.39 x l0 -_

NO, 2.53 x 10-' 2.13 × 10-' 1.24 × 10 -_ 1.67 × 10 '

HNO, 3.98 x 10 -R 2.80 × 10-" 2.62 x 10 -_ 3.70 x 10 -s

SO_ 3.05 × 10-' 2.37 × 10 -_ 2.30 × 10 -_ 3.18 x 10 -7

SOj 1.02 x 10 -+ 1.01 × 10 _o 0.96 × 10 -m 0.29 x 10 -'°

H_SO, 3.19 × 10 -+ 5.76 × 10 -+ 5.70 × 10 -+ 1.22 x 10 -+

)

)
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FIG. 4. (a) Axial NO, response variation with spreading rate for an initial jet exit speed of 620

m s-_. (b) Axial O_ response variation with spreading rate for an initial jet exit speed of 620 m
s -a. (c) The 03 depletion along the exhaust centerline (radially integrated).

deviate from the data near the edges of the jet. This is
due to the intermittency (in the experiments) that was
not included in the present formulation.

Three different realizations of the scalar field are

shown in Fig. 3 for Re = 5000, Sc = 0.7, and at a
location of X = (x - xo)ld = 25. This is quite consistent
with the experimental observations of Dahm and Di-
motakis (1987). The scalar mixture fraction fluctuates

about a constant scalar level near the centerline with

a relatively sharp drop at the boundaries of the shear
layer. This behavior is seen both in water shear layers
(Sc = 600) and in air shear layers (Cruyningen et al.
1989).

The LEM approach was then implemented to study

aircraft jet plumes. Simulations were camed out for rep-
resentative conditions for the HSCT and are summarized
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in Table 3. To include the effects of the ambient flow

surrounding the jet (which is not included in the present
formulation but would effectively decrease the spreading
rate), the spreading rate parameter c and the jet exit ve-
locity were varied. The domain simulated was a region
from the engine exit to 1000 jet diameters downstream.
For a reference initial jet diameter of 1.2 m, this implies
a domain of 1.2 kin. Although this is an appropriate region
for the near-field plume study (Quackenbusb et al. 1993;

Brown et al. 1996a), it should be noted that by the end
of this domain, the engine exhaust plume could be en-
trained into the wingtip vortex. The plume-vortex inter-
action is not included in this study. However, the present
simulation provides an appropriate boundary condition for
the full 3D simulation of the plume-vortex interaction
process (Menon and Wu 1997).

Several quantities describing the depletion of NO, and
03, such as the responses of NO, NO 2, 03, and NO,,
(sum of NO and NO:) and the depletion of O3 with
respect to the initial NOx, have been computed for all
the simulations. However, only representative results are
shown here. The species response is defined as

m,(t) - m ....
R, = , (10)

B'I_,toud

where mat) isthemass fluxofspeciesievaluatedover

the crosssectionof the jetata certaintime thatthen

correspondstoa certaindownstream locationofthejet.

Also,m ......_isthesum ofthemass fluxoftheithspecies

originatingfrom the nozzleexit,m,.....i,,and the mass

fluxentrainedintothejet,m .........d"A responseR, = 0

impliesno change of the totalamount of the species.

Negativeorpositiveresponsescorrespondtodestruction

or creation of the ith species, respectively. The depletion
of O_ is defined relative to the amount of NO, origi-

nating from the nozzle exit, mNo ,, and is given as

[O3]d_ ..... = [mo, (t ) -- m o.... ,allmNo,. By definition,

this quantity is always negative and gives an estimate
of the amount of O3 destroyed by NO, in the jet plume.

Species concentrations along the axis of the jet plume

at different locations are compared to the results from
Brown et al. (1996a) and Wang and Chen (1997) in
Tables 4 and 5. The results for NO and NO: show rea-

sonable agreement after xld > 250 (greater than 300 m)
with earlier calculations. The differences in the near

field, that is, x/d < 50 (61 m), may be due to the non-
similar initial evolution of the jet immediately down-

stream of the engine exit plane. This feature is not cap-
tured since the present scaling requires jet similarity.
The spreading rate does not have much effect on the

axial species concentrations of NO and NO: because
the initial NO and NO: are the same and no ambient

NO and NO: are entrained. Although the spreading rate
does show some effect on the data in the very near field.
by Md > 500 (greater than 600 m), its effect has di-

minished considerably.
Some results for other radicals are also shown in Table

5. Only limited comparison was possible with other
model predictions and, therefore, no major conclusions
can be made at this time. However, it is evident that

inclusion of molecular diffusion and heterogeneous ki-
netics does have an impact on the OH radical and sul-
furic acid concentrations. The changes in OH concen-
tration have an impact on ozone depletion, as discussed
below. The decrease in the gas phase H:SO, formation
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FIG. 5. (a) Comparison of axial variation of NO, response predicted by the present LEM

simulation and PDF simulation (Wang and Chen 1997). (b) Comparison of axial variation of O,

depletion predicted by the present LEM simulation and PDF simulation (Wang and Chen 1997).

is due to the heterogeneous conversion of SO_ to the
condensed form of H:SO, on soot particles.

Figure 4a shows the NO, response in the jet plume.
Initially, the NO, response has a sudden drop (a 5%-
6% decrease) and then reaches an almost constant value.

Notice that the response does not increase consistently
with decrease in spreading rate. This can be shown to
be related to the competition between various reaction

mechanisms as the ozone concentration changes (de-
creases with decrease in spreading rate). The reasons
for the initial sudden drop axe the reaction (RI), NO +
03 = NOz + O,, due to entrainment of O_ from ambient
air, and the reaction of converting NO, to nitric acid
(R2), NO2 + OH + M = HNO3 + M. Initially• the
concentration of NO is much larger than NO.,, and the
destruction rate of NO depends on the concentration of
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O_ entrained from the ambient air (R I). Since the ozone

entrainment increases with spreading rate. it can cause
an effective decrease in OH (via reactions 11, 12, and
18: see Table I). This will decrease the conversion of

NO: to nitric acid (R2), thereby decreasing the destruc-
tion of NO,. However, if the ozone concentration in-

creases above a certain level, R I dominates, leading to
a large production of NO., that is then converted to nitric
acid by R2. The competition between these reaction
pathways leads to the NO, variation with spreading rate.
It is seen in all cases that, after around x/d = 100, the

depletion of NO is balanced by the creation of NO,.
Figure 4b shows the corresponding O._ response. Ini-

tially, the O! response also drops from a positive to a
negative value and then tends to almost zero. The spread-
ing rate has an effect on the O__response with the largest
O_ response corresponding to the smallest spreading rate.
This is reasonable since the spreading rate controls the
entrainment of O_. The initial drop is due to the initial
rapid entrainment of 03. which allows the reaction NO
+ O2 = NO: + O: to deplete O_. The initial variation
in the O, response is due to the differences in the O2
entrained (which increases with spreading rate) and the
depletion of O2 (which depends on the NO, from the
engine and the temperature). Thus. for the lowest spread-
ing rate (smallest amount of 0._ entrained), the reactions
between O2 and NO, are very effective in depleting O2
since very little mixing occurs (which results in high
temperature and high NO_ concentration). However,
when the spreading rate is increased and more ozone is
entrained, the increased mixing in the jet enhances the
dilution of NO, concentration and the temperature also
decreases. As a result, the ozone response is very small.
Further downstream, although O3 entrainment linearly
increases with the distance, the radicals from the engine
have been almost exhausted and results in almost neg-
ligible depletion of O_.

Figure 4c shows the ozone depletion as a function of
spreading rate and initial jet velocity. In all cases, ozone
is depleted by around 2%-3% in the jet plume. Increase
in the spreading rate (for a fixed jet velocity) slightly
increases ozone depletion. There is, however, a much
stronger dependence on the jet velocity with more ozone
depleted when the jet velocity is reduced. This is un-
derstandable since reducing the jet velocity implies re-
duced convective motion (increased large-eddy turnover
time). This allows more time for the local reaction-

diffusion and the turbulent mixing processes to complete
before downstream convection occurs.

A comparison between the present results and the
PDF jet simulation by Wang and Chen (1997) was car-
tied out for a fixed spreading rate of c = 0.055 and an
initial jet velocity of 620 m s- _. Figures 5a and 5b show,

respectively, the NO, response and ozone depletion pre-
dicted by the two methods. Although the same trend is

seen, this study shows a reduced NO, response and a
reduced ozone depletion in the jet plume. Around 15%
less NO, and 30% less O_ are depleted when microscale

turbulent mixing and molecular diffusion effects are in-
cluded. Earlier, comparisons between WMR and PDF
predictions were carried out (Wang and Chen 1997).
Results showed that a similar decrease in depletion oc-

curs even when mixing was modeled (using an ad hoc
mixing timescale model). However, the overall response
was not very high. The WMR and PDF methods pre-
dicted, respectively, a 6% and a 5% decrease in NO, in
the plume while the present results suggest an even

smaller decrease: approximately 4%. Thus, it appears
that taking into account the local turbulent mixing and
diffusion timescales results in a reduction in NO, de-

pletion. A similar result for ozone depletion is shown
in Fig. 5b and indicates that the inclusion of local mixing
effects result in an overall O_ response of around 0.25%,
compared to around 0.35% as predicted by the PDF
method.

To determine the importance of molecular diffusion (and

differential diffusion), a simulation was carried out by
suppressing molecular diffusion but allowing the small-
scale turbulent stirring to occur unchanged. This result,
also shown in Fig. 5, suggests that accounting for turbulent
mixing at all the spatial and temporal small scales has a
much larger impact than including molecular diffusion.

When heterogeneous reactions are included, NO, is
transformed to its relatively stable form in the reservoir
specie nitric acid. This increases the destruction rate of
NO_ (by around 15%), as shown in Fig. 6a (some results
for other radicals are shown in Table 5). Note that most

of the NO, destruction occurs within the first 100 jet
diameters, and after that remains almost constant. De-

struction of O! (not shown) is also decreased, although
at a less significant level than NO_ destruction because
there is less NO,. However, since O2 is also destroyed
by radicals such as OH and HO 2, the final 03 response
is almost unchanged when heterogeneous reactions are

included. This result further emphasizes the importance
of properly estimating the concentration of other radi-

cals such as OH and HO2.

The competition between the gas phase H,:SO., and
the condensed phase H:SO, formation reactions for the
available SO3 was also studied. Figure 6b shows the
centerline SO3 concentration for these cases. The SO3

concentration is significantly decreased when the gas
phase H_SO, formation reaction is included. Adding the
heterogeneous process of H,SO_ condensation on soot

particles causes a further decrease in the SO3 concen-
tration. This behavior is reflected in the gas phase H:SO4
centerline mass fractions for these two cases, as shown

in Fig. 6(:. When condensed H2SO,, is formed, the gas
phase H2SO4 concentration is significantly decreased

since a substantial amount of SO3 is lost from the gas
phase to the condensed phase reaction. Note that this

study did not address the other heterogeneous processes
related to sulfur particles in the plume. Thus, these re-
sults are likely to be modified when binary homogenous
nucleation and other aerosol-related kinetics are includ-
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FIG. 6. (a) Effect of heterogeneous kinetics on the NO, response in the exhaust plume, (b)
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of H,SO,.

ed. Extension of this model to factor in these hetero-

geneous processes is currently under way.

5. Conclusions

In this study, fluid mixing and chemical reactions in
the near field of an engine exhaust jet plume were in-
vestigated using a mixing model that explicitly incor-

porates the large-scale mixing process as entrainment
events and stochastically simulates smail-scale turbulent
mixing and molecular diffusion effects. A reduced re-
action mechanism that accurately reproduces results of
a detailed mechanism for the lower-stratosphere chem-
istry was used to simulate the exhaust plume dynamics
of a typical HSCT aircraft.

This study shows that, compared to predictions based
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on models that do not include small-scale mixing and/
or molecular diffusion effects, 30% less O_ and 15%
less NO, are depleted in the near field of the plume.
This suggests that the effects of the local lack of mixing
have an inhibiting effect on ozone depletion in the near-
field plume. Inclusion of heterogeneous kinetics in-
volving formation of condensed nitric and sulfuric acid

on water condensed on soot particles showed that 15%
of the available NO, is converted into its inactive form
but has negligible effects on O_ concentration. The pre-
dictions are also shown to be dependent on the avail-
ability of other radicals such as OH. Although these
results are in reasonable agreement with other predic-
tions using less sophisticated (or no) mixing models,
the importance of the small-scale mixing and diffusion
processes on the near-field plume dynamics can only be
addressed using a physically consistent simulation mod-
el. The development of this model offers such a capa-
bility. The impact of small-scale mixing on homoge-
neous nucleation of sulfuric acid aerosol particles has
not yet been addressed but is currently being incorpo-
rated and will be reported soon. Another possible role
of this model is to provide appropriate conditions for
the plume-wingtip vortex interaction phase that im-
mediately follows the plume stage. More complex
chemistry, especially heterogeneous kinetics that occur
in this stage, depends critically on the chemical state of
the plume during the interaction phase, Accurate esti-
mate of the species concentrations and aerosol particle
distribution at the end of the plume stage will allow a

_aore accurate evaluation of the plume-vortex dynam-
ics. To evaluate this capability, simulations are currently
Under way (Menon and Wu 1997) of the plume-vortex

interaction phase using data from this study. These re-

suits will be reported in the future.
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Modeling of microscale turbulence and chemistry interaction

in near-field aircraft plumes

Z. Wang and J.-Y. Chen

Department of Mechanical Engineering, University of California, Berkeley

Abstract. The potential impact of aircraft exhaust gas on entrained ambient air in the strato-

sphere has been studied by using several numerical models to manifest the importance of mix-
ing processes occurring at different scales. These models include perfectly stirred reactor

(PSR), transient well-mixed reactor (WMR), partially stirred reactor (PaSR), and joint scalar

probability density function (PDF) simulation for the near-field jet exhaust. Sensitivities of
major species to chemical reactions are presented to illustrate the chemical transformation in

the near-field jet regime. An accurate reduced chemical mechanism that captures major reac-
tion pathways has been systematical b' developed and tested. The predicted results with the re-

duced mechanism are found in good agreement with those from the detailed mechanism, but the

computing time is decreased by a factor of 3. The effect of microscale turbulent mixing and

chemistry interaction on species evolution is studied, and its impact is found most noticeable in

the near field where the timescale of chemistry for highly reactive radicals, such as OH and

HO:, is comparable or faster compared with that of microscale mixing. When microscale
mixing is included, the predicted H2SO4 level increases at locations where sulfate aerosol for-

mation may be important in the near field.

Introduction

Engine emissions from the rapidly growing subsonic air-

crafts and the planned high-flying supersonic aircrafts may

significantly alter concentrations of ozone, water vapor, and

aerosol in upper atmosphere and may lead to climate changes.

In particular, potential ozone depletion caused by aircraft

emissions in the stratosphere is of great concern. Conse-

quently, the impact of emissions from the planned supersonic

commercial aircrafts on atmospheric chemistry needs to be as-

sessed as thoroughly as possible. Currently, several major re-

search efforts are undertaken within NASA's I--ligh-Sp_d Re-
search Program (HSRP) to address various issues related to

the effects of a fleet of high-speed civil transport (HSCT)

flights on the stratospheric chemistry. Research tasks on
similar subjects for the growing subsonic aircrafts are also

being conducted within NASA's Advanced Subsonic Tech-
nology Program (ASTP). A review of these studies [Stolarski

and Wesoky, 1995] clearly demonstrates the complexity of the
problems and the associated nncertainties. Numerical calcula-

tions on near-field jet plume [Miake-Lye et al., 1993a, b; K_-

chef, 1994, 1996; Anderson et al., 1996, Brown et al., 1996]
and e_ents in the wake [Arnold et al., 1992; Fahey et

al., 1995] have been implemented to quantify levels of major

gas phase species and exhaust aerosols. Although the

near-field jet regime lasts only a few seconds, major conver-
sion of gas phase NO, and SO_ into HNO3 and H2SO( driven
by hydroxyl radical occurs in the near field. Nucleation of

sulfate aerosol particles and their possible interaction with ac-
tive soot particles are believed to occur primarily in this re-

g/me. Modeling of near-field jet is considered an important

Copyright 1997 by the American Geophysical Union.
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task to provide proper initial conditions of NO, and aerosol
contents for the subsequent study on chemists 3' and micro-

physics in the intermediate vortex interaction and far-away
dispersion regimes. One area that lacks fundamental under-

standing is the relative importance of microscale turbulence
and chemistry interaction in the near-field aircraft plume and

its influence on chemical kinetics when combined with large-
scale entrainment process.

Since the fluid mechanics becomes complicated in the re-

gion where the exhaust jet plume and wing vortex begin to
interact, large-eddy simulations may be necessary for explor-

ing the role of wing vortex on mixing process. The conse-

quential impact of wing vortex on chemical kinetics can be

studied provided that simplified chemistry is available for de-
scribing the key reaction paths. In addition, aerosol dynarmcs,
e.g., binary nucleation of sulfuric acid and water vapor, con-

densation, coagulation, are considered important processes in
the near-field plume. Inclusion of these processes, while tak-
ing into account the interaction between microscale turbulence

and chemistry, would demand substantial computing time.

The main objectiws of this study are to identify and charac-

terize the distribution of key species in the near-field plume
regime, to develop an accurate reduced chemical mechanism

for gas phase chemical reactions, and to explore the unpact of

microscale mixing on the chemistry in the exhaust plume.

Numerical Models

Table I lists the major features of various numerical mod-

els that are used to assess the relative importance of mixing
processes at different scales on the evolution of plume chem-
istry in the near field of exhaust plume. The macroscale mix-

ing process refers to turbulent convection and stirring across
the jet plume. The dominant role of macroscale mixing is to
bring fluids fi'om different parts of flow over a distance much

12,871
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Table 1. Features of Various Numerical Models for Modeling Jet Plume Chemistxy

ModelAssumptions PSR WMR PaSR PDF JetWithEachCell PDF JetWith ModifiedCud'sMixing
WellMixed ModelForEachCell

Microscale well mixed yes yes no yes no
Macrosr.ale well mixed yes yes yes no no

Transient effect no yes yes yes yes

PSIL perfectly stirred reactor, WM]L well-mixed reactor, PaSIL partially stirred rea_, PDF, probability density fimetion. Micro-
scale well mixed means micromixing time is much smaller than the chemistry time, so microscale turbulence effect is ignored. Mac-
roscale well mixed means macro"_,ale turbulent diffusion time is much smaller than the residence time, so properties are spatially uni-
form (homogeneous). It is assumed that in PSR and PaSIL there is a stirrer which makes the reactor homogeneous and either well
mixed or not well mixed in microscale. WMR is similar to a Lagrangian box model and PDF jet with each cell well mixed is equiva-
lent to the standard plume flow field code [Dash et al., 1990] and KamhePs [ !996] 2-D jet model.

larger than the scale of molecular diffusion and to create sub-

stantially large interracial areas among fluids. The microscale

mixing refers to the turbulent diffusion process occurring at

the microscale which is strongly enhanced by macroscale

mixing. Only aRer fluids are well mixed at the microscale will
chemical reactions take place. The resolution of numerical

simulation for the mixing process is limited by the grid size

which is usually much larger than the scale of molecular dif-

fusion. Consequently, modeling of turbulence and mixing pro-

cess for fluids within grid cells is necessary. A microscale

well-mLxed state can be assumed when the turbulent mixing

within a grid cell is faster than chemical kinetics.

If the mixing processes at both macroscale and microscale

are assumed infinitely fast, the jet plume can be modeled by
the well-mixed reactor (WMR) which is similar to the La-

grangian box model [e.g, Miake-Lye et ol., 1993b, Karol et

al., 1994; K_trcher, 1995]. A perfectly stirred reactor (PSR) is

a simplified version of WMR as it computes only steady state
solutions of chemical kinetics for a mixture of different fluids

brought together into the reactor for a period of residence time.
PSR calculations facilitate detailed sensitivity analysis which

is useful for identifying the major chemical reaction pathways.

When the fast mixing assumption at the microscale is re-

laxed, a partially stirred reactor (PaSR) is developed to in-
clude the effect of microscale mixing. The unmixed nature is

described by the joint scalar probability density function

(PDFO for reactive species. To account for the interaction of
fluid dynamics and chemistry that causes non-oniform fluid

compositions inside the jet plume, two-dimensional modeling

of jet is necessary to resolve the spatial distribution. For in-
stance, the standard plume flow (SPF-II) field model devel-
oped by Dash eta/. [1990] can be used to model jet develop-

ment with the assumption of fast microscale mixing within

grid cells. To explore the potential impact on chemical kinet-

ics due to microscale mixing, the joint scalar PDF is used to

describe the unmixed nature of fluids within each grid cell.

The PDF jet model will be computed with/withont mioroscale

mixing models to provide information on the relative impor-

lance of micmscale turbulent mixing and its interaction with
chcrmcal kinetics.Describedbelow are detailsof thesenu-

mericalmodels.

Perfectly Stirred Reactor (PSR) Model

The perfectly stirred reactor (PSR) is a homogeneous reac-
tor which has a continuous mass flow in/out of the reactor as

shown in Figure 1 [Glarborg et al., 1986]. When the fluids

enter the reactor, it is assumed that the fluids are perfectly

mixed with the existing fluids m the reactor immediately. This
assumption is justified when the characteristic time of turbu-

lent mixin 8 in both macroscale and microscale is much

smallerthanthatof chemistry,so the rate of chemical process

is controlled solely by chemical kinetics. Turbulence effects
are not accounted for in this model because of the assumption
of inflmtely fast mixing. Detailed chemical kinetics can be

studiedby using mean thermochernical properties.

The conservation equation for reactive species at the steady

state is given by

m(rk - r; ) - o,_wkv =0, (l)

and the corresponding energy equation is described by

K

E(Y,hk-rfh'k)+Q = o. (2)
k=l

In these two equations, Yk is the mass fraction of the kth spe-

cies (there are K species), IVk is the molecular weight of the
kth species; V is the reactor volume; m is the mass flow rate

through the reactor, oJk is the molar production rate of kth

species per unit volume by chemical reactions; hk is the spe-

cific enthalpy of the kth species; and Q is the reactor heat loss.

The superscript asteriskindicates the inlet conditions. The
characteristic flow time is residence time r = pV trk. A hy-

brid Newton/time-integration algorithm is used to solve for

the solution, and details of the numerical method are de-

scribed by Glarborg et al. [1986]. PSR is used in the current

Residence Timc,x

Y*(k) _ Temperature, T _ Y(k)

h*(k) Enthalpy, h(k) h(k)

Figure 1. Schematic of perfectly stirred reactor (PSR) show-
ing the characteristics of the reactor, where m is the mass

flow rate, k denotes species k, and superscript asterisk indi-
cates the inlet condition. The key parameter is the residence
time r= pV/_.
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study primarilyfor developingreduced chemistryand for

identifyingcontrollingstepsin 03 and NO, chemistrythrough

sensitivityanalysis.To assess differenttreatmentsfor the

mixing processes occurring in the near field of the jet plume,

we have used more sophisticated numerical models described
below.

Transient Well-Mixed Reactor (WMR) Model

The transient WN_ model facilitates study of the time
evohidon of chemical kinetics for engine exhaust gas subject

to injection of ambient air.A schematicdiagram for the WMR

issketchedinFigure2. SimilartothePSR, a global residence
time can be defined as

MS
rR -- m, (3)

rho

where M_ is the mass of gas inside the reactor, and rh. is mass

entrainment rate. Usin 8 rm as a parameter, conservation

equations of mass, species, and energy can be written as

a_R
= M.__._n, (4)

dt rR

dr_ 1
at =-_R(v°a - YRJ) + °% .IV:, ]=l,..-,N (5)

PR

dT R 1 u ,v d_h_W./ Qto.
_ =7[X(h,j -hR.j)Y,.j]- Z -=

dt cparR j=t j=t PRCpR _pnMR

(6)

where the subscript R represents quantities inside the reactor
and those entlamed am denoted by the subscript a. The WN_

is applied to study the chemical kinetics of the engine exhaust

gas that is continuously mixed with ambient air. For constant

temperature cases the WN_ model is similar to the Lagran-
gian box model [Miake-Lye et al., 1993b; Karol et al., 1994;

Karcher, 1995] when the following relation is used to bridge
the two models:

m. = K(t)
MR A ' (7)

where A is the cross-section area of a plume and K(t) is the

growth rate of the plume cross-section area in a Lagrangian

box model equation

Figure 2.Schematicdiagram of a transientwell-stirredreac-
tor (WMR) showing ambient airentrainedintothe reactor

with a rate of too, where M_ is the mass of gas in the reactor,
and it increases with time.

-_-_t=P, -L, - -_(,_ -,¢)+&, (8)

where n. n: are the species concentrations inside the box and
the air, respectively; Pi and/__ are the production and destruc-

tion rate by chemical reactions; R_ is the source or sink due to

other mechanisms. In the WMR model reported here, the air

injection rate is determined from the mass entrainment rate
into the jet estimated by the PDF jet plume model to be dis-
cussed in the later session.

Partially Stirred Reactor OPaSR) Model

When the characteristic time of turbulent microscale mix-

ing is not fast compared to that of chemical reaction, the im-

pact of microscale mixing may become important. In the cur-

rent PaSR model, the mean properties am assumed to be spa-
dally homogeneous (well mixed m maeroscale turbulence) but

not completely mixed at the molecular level. Compared to

WMR, the effect of mieroscale mixing isincluded in PaSR, so
the scalar distribution inside a reactor needs to be modeled to

manifest the micromixing process. The.joint scalar probability
density function (PDF) is used to describe the distribution of

scalars, and therefore it contains information about the mixing

state. The time evolution equation for the joint PDF for the

PaSR has been derived by Chen[ i 996] as

7 t (v,,,)p. ]

rR

==1.p-1d_v=cM_

(9)

where the mean residence time is defined as ra = M_/_h,,

scalar ¢ represents the set of species mass fractions and en-

thalpy. V is the set of independent variables corresponding to
the dependent scalar variables #. P,(_v.0 is the joint PDF of
_. a tilde denotes the density-weighted average. _e is the
scalar dissipation rategivenby ¢_o = rv#.. V#_ where F is

molecular diffiasivity, <¢_1 ¢=V > represents the average
scalar dissipationroteconditionedon a certainset of scalars,

and S. isthe chernicalsourceterm forscalar_,_The firsttwo

terms on the right-hand side represent the effects of chemical
reaction and the throughflow on the joint scalar PDF, respec-
tively. Both of these terms can be calculateddirectly and do

not need modelin 8. The last term stands for the effect of mi-

croscale mixing on the PDF which requires closure approxi-
mations. PaSR includes chemical kinetics and the additional

interactions with microscale turbulence under the assumption
of homogenous flow (no macroscale turbulence) and further

ignoring velocity fluctuations. The simplicity of this model
permits us to carry out simulations with detailed chemistry
without significant computing burdens. Morn importandy,

PaSR can be viewed as a single representative 8rid cell em-
bedded in a large computationscheme. Therefore PaSR is an

ideal test bed for exploring the influence of the microscale

mixing on chemical kinetics, for evaluating the performances

of reduced chemistry,and for assessingcurrent and emerging
mixing models.
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In this study, the effect of mieroscale mixing on the PDF is

modeled by the modified Curl's mixing model [Janika et

al., 1979],

k t_2
- y. .[<c_ I_ = w > P,(w,t)]

,=1,,s=1 c_,,c'_

r_ 1¢v," J
00)

where H isthetransitionalprobabilitydefinedas

I
H(_,_" I_') : _ for _ e [_',_'1

= 0 elsewise. (11)

The amount of mixing is modeled through a characteristic

mixin 8 time which is related to the turbulence timescale for

micromixm_ r,,_, =k'/g, where k is turbulence "kinetic en-

ergy and _" is turbulence dissipation rate. Because of the

multidimensional nature of equation (9), Monte Carlo tech-

nique is used to solve the PDF evolution equation. In the con-

text of smaulatin 8 jet plume usm 8 a PaSR, the air injection

rate, similar to that in the WMR, is needed, and its value is

estimated from the PDF jet plume model described next.

Probability Density Function (PDF) Simulation for
Near-Field Jet Exhaust

A proper treatment of the interaction between turbulence

and chemical kinetics is important to the predictions of ozone

and NO. changes in the engine exhaust gas. The standard

plume flow (SPF-II) field model by Dash et al. [1990] as-

sumes that the gas inside each computational cell is perfectly

mixed. The microscale mixing effect is therefore neglected in

the SPF-II code, and its impact on chemical kinetics has not

been assessed. To account for the microscale mixing, the joint

scalar PDF is solved for by the following transport equation

[Pope, 1985] using the Monte Carlo technique,

__ OP¢0,e,x,/) =_ f _a_a [/_a(ip,)j_#(g;£,,)]pu_ _* a=J

O
-[_<u[I#=w >P,i(w:_,t)]

&k

t 8
- Z [,_<c,_t_=_ >P,(_,;_,O}

_=I.#=I oi¢ooi¢p

(12)

where theturbulenttransportterm can be modeled by a gradi-

ent diffusionmodel using theturbulencetime and fluctuating

velocitiesfromtheReynolds stressmodel,

.. i" .% o_(_) d3)

where C, is an adjustable constant (- 0.25 in jet flows),

ul = u_ - _k is the density-weighted velocity fluctuation, and

<u_" I ¢ : _u> is the average fluctuation conditioned on a cer-
tain set of scalars. The flow field is solved by a Reynolds

stress turbulence closure model, which directly solves the

modeled transport equations for Reynolds stress, with a

marching downstream algorithm, and the details can be found
in the works ofChen et al. [1987, 1989]. The modified Curl's

mixing model (equation (10)) was used to simulate the effect

ofmicmscale mixing process.

The PDF numerical model was validated by comparing

computed results without the effect of microscale mixing with

those obtained from the SPF-II code by Brown et al. [1996]

using the same mechanism and initial conditions for a HSCT

ease. The computed centerlme meaa concentrations of NO,,

NOy, SOa, and H_SO_ are found in good ageement despite

many differences in the numerical models. In addition, both

models predict the NOANO_ ratio m excess of 80% in accord

with the measurements by Fahey et al. [1995] from the

NASA ER-2 hi$h-altitude aircraft. Furthermore, we corn-

10"1 i ........................." _, _"* _ ""*'_ _ *-_ *_*"" "_'_"_ _ NO
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Figure $,Centerlinemole fractionsof major nitrogen,sulfur,

and hydrogen speciesforB747 jetengine.They compare well
withKdrcher's[1996]results(notshown).
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pared our predicted results with Kdrchefs [ 1996] B747 case

using the same chemical mechanism and initial conditions.

Figure 3 presents our predicted centerline mole fractions for

NO., HO. and SO. which agree with K_rcher's numerical re-
stilts (not shown).

Chemical Reaction Mechanisms

Detailed Gas Phase Mechanism

Tables 2a and 2b list a detailed gas phase mechanism con-

mining 24 species with 60 elementary reaction steps. It in-

dudes reactions of species O. HO. NO., SO. and CO. that

are important in the near-filed jet plume in the stratosphere.
The reaction rates are basically taken from data presented by
K_Ercher [1996], which cover reaction rates below 1000 K and

most of which represent linear or nonlinear fits to a large

number of the data by National Institute of Standards and

Table 2,, Gas Phase Reaction Mechanism: Binary Reactions

Reaction Rate Constant
(era + molecule "1s+)

(RI) O+03--} 202
(R2) H + 03-+ OH + O2
(R3) H + OH-+O+ H2
(R4) H + HO2 _ 2OH
(R5) H * HO2 _ H: + 02
(R6) H+HO2_O+H:O
(R7) OH+O-+H+O2
(R8) OH+03"-_HO2+(9:
(R9) OH+H2-+H+H20
(R10) OH + OH --*O + H20
(Rll) OH + HO_-'* O2 + H_
(RI2) OH + H203 _ HO2 + H:O
(R13) HO2+O_OH+O2
(RI4) HO2+03_OH+202
(RI5) H03 + HO2 -_ H_)2 + O2
(R16) H202 + O -'_ OH + HO2
(RI7) H:O2 + H "-_ OH + H20
(R18) H;O: + H -_ HO2 + H2

(RI9) NO + 03-+ NO2 + O2
(17,20) NO + HO2 --_ OH + NO2
(R21) NO + N03 --_ 2NO2
(R22) NO2 + O-o NO + O2
(R23) NO2 + 03-+ NO2 + O2
(R24) NO2 + H -+ OH + NO
(R25) NO2 + N03 -+NO + NO2+ O2
(R26) NO2 + O-+ NO2 + O2
(R27) N03 + OH -+HO2 + NO2
(R28) HNO2+O-_OH +NO2
(R29) HNO2 + H -* NO2 + H2
(R30) HNO2 + OH -* NO2 + H_3
(R31) HN03 + O-* OH +N03
(R32) HNO2 + OH _ NO, + H20

(R33) SO + O2-_ O + SO2
(R34) SO + 03-, SO2 ÷ O2
(R35) SO + OH-} H + SO2
(R36) SO+NO2-*NO+ SO2
(R37) SO2 + 03 "-}O2 + SO2
(R38) $O2+ O--* O2+ SO2
(R39) S03 + H20 _ H:SO,
(R40) HS03 + O2 -* HO2 + SO_

(R41) CO + OH-=+ H + CO_

1.21 x 10nexp(-2125fr)
1.15 x 10mex_..436/T)
8+10 x 10"21Tnexp(195@T)
2.8 x 10"l°exp(-440/T)
6,9 x 10"u ex_-636,9fr)
2.80 x 10"lZTe'4exp(-677.9/T)
1.83 x 10"" ex_(173.3/T)
1.9 × 10"nexp(-1000/T)
1.1 1 × 10"L+TL_ exp(-1589/T)
8.34 × 10"lTTTM ex_355.7fr)

5.09 x 10n_x_72.6/T)
2.13 × 10"T e exp(-179.gfl')
2.71 x t0"u exp(.224/T)
1.4 x 10J'exp(-600/T)
2.2 x 10"Uexp(600/Y)
2.33 x 10"u exp(-2814/T)
1.7 x 10"nexp(-1800rf)
1.77 x 10""exp(-2890/T)

2.14 x 10t2exp(-1408/T)
3.7 x 10qZexp(240,'T)
1.8 x I0"'exp(110fT)
6.5 x 10 _exp(120/T)
1.2 x 10 _exp(-2450/T)
1.4 x 10"t°

1+91 x 10"13exp(-1696,,T)
1.0 x 10"u
2.3 x 10"n
2.0 x 10"llex/_-3000fr)

2.0× l 0":' ©xp(-3700/T)
1.8 x 10" exp(-390/T)
3.0x lif t'
4.02× 10"14exp(317.7/T)

1.55 x 10q_exp(.2288/T)
4.3 x 10nexp(-1148/T)
8,59 x 10"u
1.4x 10"n

3.0 x 10"12_exp(-7000/T)
3.17 x 10"nexp(-4455/T)
1.2x lifts

1.23x lO'nexp(.316.g/T)

4.44 x 10.'+ T°'"exp(94/T)

Technology (NIST) or are extensions to higher or lower tern-

peratures. Rate constantsforthe reaction of HN03 with H and

0 (reactions (28) and (29)) are taken fxorn data by Tsa_g et al.

[19911.

Reduced Reaction Mechanhm

In the intermediate regime of the wake the jet plume was

entrained into the wing tip vortex. To model the impact of the
wing vortex on ozone in this region, large eddy simulations
CuES) may be required in orderto model the vortex properly.

Solving the flow field by LES would demand significant com-

puter time, makin 8 it impossible to incorporate a detailed

chemical mechanism. A reduced mechanism capable of de-
scribing the key chemical reactions is necessary. A reduced

chemist_ is feasible if certain intermediate species reach the

quasi-steady state when their production ratesarenearly equal
to their consumption rates.Consequently, the conocntration of
a quasi-steady statecan be expressed in terms of major spe-

cies.We identify a species in the quasi-steadystatewhen it
satisfiesthecriterion

X, Id,_ -till <<1 (14)
max(Io_ hi_ I)

where d_/' and dg are the production and consumption rates

of species k, and Xt is the mole fraction of species k. Because

of the rapid temperature cbamges in the near field of jet plume,

a species that does not satisfy the steady state criterion in the

near field may reach the steady state in the far field. One may
construct different reduced mechanisms suitahle for different

jet regimes.

Development of reduced chemistry has been carried out

using the PSR with a computer-assisted reduced mechanism

code [Herr et aL, 1993] for the near field of the jet plume

where large temperature changes take place. Assuming quasi-

steady state for H, H03, H_O_, SO, I-I2, HSO_, NO3, N205, and
O (9 species out of a total of 24 species), we obtained the fol-
lowing eight-step reduced mechanism,

(G-R1)

(G-R2)
(G-R3)
(G-R4)

(O-R.5)
(G-R6)

(G-RD
(G-RS)

03 + S03 = 02 + S03

03 + S03 = 203 + $03

03 + 2OH = H20 + 03

NO +O3 = O_ +N03

03 + NO + HN03 + $03 = OH + 2N03 + $03

03 + S03 + HNO_ = OH + NO2 + S03

H,O + S03 = H_SO,

03+co=03 +c03

The rates for the global reactions are expressed in terms of the
elementary reaction rates as

(_G-RI ----Ol 4- £054- £07+ £0114- £013 .{- £014 .{.. £015 .{.. _'_4- 0)2._ 4- £026

-- £033 + £037 4- £04a -- £045 4- 049 4- £051

£0G-R2 = 0)3 -- £04 4- 0) 8 4- 0)10 -- £013 -- £016 -- £017 -- £020 + £025 4- (027

4- £0294- £0304- £032-- £04a -- £0(3 -- £04,14- £04g-- 0)$0 -- O5L

-- £052-- £051+ £0_4- 0)$7 -- £0_t-- £060

£0C,-R3 ==--£064- £094- £0104- £011 4- 0)124- £017 4- (1)30"0" £0324- £04"/

£0C..R4 = £019 + (D20 -- £099 + £023 -- _)24 -- 2_o_ - "u - 0)2r- £0u
+ £0_ + £051 + £0_ + £053-- 0)5e-- £0y/

0)G.-R_ = 0')21 -- 0)23 4- 0)25 "1"0)26+ 0)27-- 0)52-- £053.{.. 0)5";'

£0G-R6"" 0)_+ 0)29 4- 0)30-- 0)51 + 0)_

0)G-R7 : (03@

£0G,-Rg: 0)41 + 0)6_1
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Table 2b. Gas Phase Reaction Mechanism: Three-B<xty Combination and Thermal
Decombination Reactions

Reaction Low-Pressure Limit ko High-P_ssua: Limit k,.

(R42) O + O_ M 0"2 5,2x 10"3Scxp(900/T)

(R43) O + 02 "_ 03 5.51x I0"31"I-LSexp(152.6/T)4.2x 10"l=e.,qu(-183/T)

(R44) H+O M----E-_OH 1.30x 10"2P'I"l

(R45) H + OS _ HOS 1.05x 10"_T'_'_cxp(144.2/T)7.5x 10"n

(R46) H + H _ H: 1.28x 10":s"I-LIScxp(-100.6/T)2.9x 10"t°cxp(5821/T)

(R47) H + OH M'-'-E'-+H_D 1.54x 10"a'l-":t_p(295.3/'r)2.69x lOt°¢xp(-75/'r)

(R48) OH + oH_M Hzos 6.58x 10"_T"°'i 1.5x I0"n

(R49) HOS + HO_ _ H_O2+ 02 1.9x 10"x_cxp(980:l') 2.2x 10"l_p(600/T)

(R50) NO + O M-'--M--+NOS 9.09x I0"a"I"L" 5.43x 10"t=T°J

(R51) NO* OH_ M HNOS 1.91x 10"_'I"L*exp(164.UF) 5.1x 10"I=cxp(159.1Vr)

(R52) NOS+O M---E--*NOS 6.21x0"Z3T3"exp(-570.5/T) 2.65x 10-Ucxp(-25.7Rrr)

(R53) NO2 +OH _ HNOS 3.50x I0"t6T'S:¢xp(-g40:'I") l.g4x1012¢xp(587,2/T)

(RM) NO2+NOs _N=Os 6.9gx 10"_T"_" 6.40x10"I3T°'z

(R55) N_Os _ NOS + NOS 1.5x I0"6cxp(-9104:r) 5.9x 10u cxp(-9370/T)

(R56) HNO_ _ OH + NO 5.00 x 1061""sm_q:J(-25340/T) 1.20 x 10t_T'L"_¢xp(-25010/T)

(R57) H'NOS_ OH + NOS 1.2 x 10"_q_(-22270/'T) 2.14 x loLScxp(-24270:r)

(RSg) SOS + O_ SOs 1.49 × 10J2cxp(-601:r) 1.19 x I0 ")

(R59) SO: + OH _ HSOS !.97 x 10"_:exp(867.3/T) 2.0 x 10"t2

(R60) co+o_U COS 2.49 x 10 "s3cx.p(-1550/T) 2.66 x i0 "l' cxp(-1459/T)

The effective second-order reaction rate constant is [Demor¢ et aL, 1992]

k(M,T) = (. ko(T)[M] _0 6n*_i°s'°_k°(r>{ul/k'_r)))2_''

Forlhird-,ordcrlow-pressureand second-ordcrhigh-pressurelimits,thcunitsam cm6mol_cu]c"2s"Iand cm 3
mol_uJ¢"is"Imspc_ctiv©ly.Forsecond..ordcrlow-pressureand firsl-ordcrhigh-pressurelimits,thcunitssrc
cm _s"sand s",respectively.

Although the species in the quasi-steady state do not appear
explicitly in the global reactions, their kinetics effects are in-

cluded in the elementary reaction rates. The concentrations of

quasi-steady state species are computed by iteration using the
following expressions:

[HSO3] = k59[OH][SO2] •
k40[O2] '

A
[NO3] =

k26[O1+ k2s[NO_] + k2_[OH] + ks4[NO2] + k2_[NO] '

d = h[[OI[HNO_] + h_IN2Os] + k_2[O][NO2]

+ kz_[NO2][O_]+ k3:[OH][HNO_ ];

B

[H]= C'

B = k3s[OH][SO] + k¢[OH][O] + ]o[OH][H2 ]

+_,_[OHI[CO],

C =k_[H]+k_[OH]+k_[O][M]+k_s[H_O2]+k2_[HNO2]

+ kl'_[H202 ]+ ks[HO21 + ks[HO2 ]+ k47[OH] + k,,[H02 ]

+ k2[O3]+ k24[NO2] +k45[O2],

[O] ---k_[O_l[SO] + k_[H][OH] + kdIHl[HO2] + k_o[OHI[OH]
D

O = k_,_[SO2] + k_s[SO3l + k_iH][M] + k42[Ol[M]

4- ]¢'16[H202 ] 4- ]¢60[CO] 4- k]I[HNO3] 4- ]¢2_[HNO2 ]

+k_s[NO_]+k_[HO21+ kss[SO21+k_[O_1+kv[OH]

+ ksz[NO2 ] + kso[ NO] + kz_[NO2 ] + k43[O2 ],

[SOl = k,._[O]tSO21 .
/q4[O3] +R_s[OH] +/q6[NO2] +k3_[O2] '

E
[H2I = _"

ko[OH] '

E = ke[H][H] + k3[H][OH] + k_,[H][H202]

+ k2_[H][HNO2 ]+ ks[HI[HOwl ,

[H202 ]= k4°[HO2 ][1"[O2]+ k_[HO2 ][HO2 ]+ k_[OH'][OH]
t_s[H]+k_dO]+ki_[H]+kt2[OH]
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[OH][OH]

M]

02]

-.,¢,[OH]

OH][OH]

F

triO21= E,

F =k_,[H][H:O:I+k_dOl[H_O21+k27[OH][NO31

+ kI2[OH][H202 ]+ k${OH][O31+ k40[O2][HS%I

+ _45[H][O2 ],

G = ks[H] + ks[H] + k4[H] + k|310] + k49[HO2 ]

+ k15[HO21 +k_4[O3l+k,,[OH]+kz0[NO];

[I'4205] = k_[NO2][NO3]
k55

Results and Discussions

Results are presented for a Maeh 2.4 HSCT flight flyin 8 at
18 km and N85. The initial exhaust and ambient conditions

arc taken from Brown et al. [1996]. A jet exit radius of 0.93 m

[Kdrcher, 1994] is used in the simulations.

Sensitivity Information and Key Reaction Paths

Sensitivity information is useful for identifying the control-

ling chemical steps responsible for the creation/destruction of
a certainspecies.The sensitivitycoefficientsaredisplayedas

p,_ = .4, _, (15)
Xk c_

where fla is the sensitivity for change in the mole fraction of

the kth species, X'k, due to a small change in temperature-

independent prefactor, A,, of the ith reaction rate k, = A, 7"

exp(-EdT). We used the ratio (mole base) between the free-

su'eam (ambient air) and the exhaust gas from the engine to

describe the different mixtures. A large free-stream/exhaust

ratio corresponds to a mixture highly diluted with ambient air.
The PSR model has been used to assess the degree of changes
in ozone and NO, in the engine exhaust gas when it is per-

reedy mixed with a certain amount of m-nbient air over resi-

dence times up to I00 s. Fisure 4 presents a set of sample

sensitivity data of NO versus residence time for four free-
stream/exhaust ratios at 0.1, 1, 10, and 100. As seen from the

plots, both reaction (19) NO + O3 _ NCh + 02 and reaction

(51) NO + OH + M _ I-INCh + M are responsible for depict-

hag NO. When there is a large amount of air mixed with the

exhaust gas, reaction (19) becomes the dominant step in con-
verting NO into NCh. since reactions (53) OH + NCh + M --_

HNO_ + M and (30) HNO_ + OH _ H20 + NO3 am compat-

hag with reaction (51) for OH, increasing their rates will re-

duce the effectiveness of reaction (51) m converting NO into

HNCh. Consequently, reactions (53) and (30) have positive

sensitivity values. However, the impoaance of reactions (53)

and (30) diminishes as more air is mixed with the exhaust gas

since OH concentration becomes small compared to 03 in

mixtures with high free-stream/exhaust ratios.
Next we examine the sensitivity information for NCh as

presented in Figure 5. As revealed in the semitivity data,re-

action (53) OH + NCh + M --_ HNO3 + M is the major chan-

nel for concerting NOa into a more stable species HNOs.

Consequently reaction (53) has a negative sensitivity for

all mixtures. The sensitivity data also show that NCh is

produced via reaction of NO with 03 through reaction (19)

and via reaction of OH and HN02 through re.action (30). Re-

action (30) becomes less important for mixtures with high

free-stream/exl'must ratios. Reaction (19) becomes the domi-

nant mute for NCh production for mixtures with large

free-stream/exhaust ratios as more O3 is present in the system

Reaction (51) has positive sensitivity with respective to NOz

as it produces FINCh which then forms NO2 via reacdon (30).

Figure 6 shows the sensitivity information of O3 over all mix-

tures. As expected, reaction (19) NO + 03 _ NO2 + O_ is the
most irnportam siepin controlling Ch. For mixtures with low

free-stream/exhaust ratios, O3 is produced via reaction (43) O

+ O2 + M _ O3 + NL and NO2 is converted to NO via reaction

(22) NO2 + O --* NO + 02. When free-slnaun airis increased,

the importance of these two reactions diminishes due to the

consumption of the O radical.

Evaluation of Reduced Chemistry

First, PSR is used for evaluating parformanc_ of the eight-

step reduced by comparing concentrations of NO, NO2, and
O3 over a wide range of free-stream/exhaust ratios for resi-

dence times from 0.01 s to 100 s. In all eases, excellent

agreement is found between the results obtainedwith the de-

tailed mechanism and thosewith the reduced chemistry. Fig-

ure 7 presents sample comparisons showin8 almost identical

results when reduced chemistry is used; however, the com-

putirtg time is decreased by a factor of 3.

Second, to assess the transient responses of reduced chem-
istry to time-varying mixing with ambient air, WMR simula-

tions were performed with air injection rates estimated on the

basis of the PDF jet simulations. As described above, the

WMR simulations are similar to the commonly used Lagran-

gian box model except that the temperature is not prescribed

but is solved for directly using the energy equation. Figure 8

presents the time evolution of major nitrogen, sulfur, and oxy-

gen species for the engine jet exhaust over the first 2 seconds

after the exhaust nozzle, showing excellent agreement. To

further evaluate the performance of reduced chemistry with the

micromixmg effect, the PaSR model is computed with identi-

cat conditions as those in the WMR model, and the results are

presented in Figure 9. Consistent with the comparisons ob-

served m the WMR calculations, the performance of the re-

duced chemistry remains quite satisfactory in spite of the fact

that a wider range of mixtures have been computed since the
reactor is not well mixed.

Third, Monte Carlo PDF jet simulations have been per-

formed and Figure 10 presents the predicted eenterline tem-

perature evolution obtained with the effects of mieroseale

mixing. The computed temperature is seen to decreases rap-

idlyin the near field, manifesting fast entrainment of cool am-

bi_at air. Figure 1 ! presents the centerline mole fractions of
major nitrogen, sulfur, and oxygen species evolution obtained

with the detailed mechanism and the eight-step reduced

chemistry. It shows good agreement except for 03 at the early

jet stage. This is due to the steady state assumption for the 0

radicalwhich does not achieve steady stateat early jet stage
where it contributes to the production of O3 through O + 02 +
M--_ O3+ M.

Impact of Micro_de Mixh_ on C'l_micsl K/netlcs

A parametric study of the influence of various mixing proc-

esses on predicted chemistry has been carried out with the

models listed in Table I. To quantify the impact of different

mixing processes on NO,, HNCh, and O3 in the jet plume, we
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examine the species reslxmse normalized by NO_ flux at the
nozzle exit. Because of the small amount of NO= entrained

into the exhaust plume the total NO, mass flux remains nearly
constant. The normalized species response is defined as

m,(t)-m,.to_(t)
normalizedspeciesresponse :

?'nNO _

(16)

where _(t) is the mass flux of species i evaluated over the

cross section of the jet at a certain downstream location, and

rn_ ,^tal is the sum of the mass flux of a certain species origi-
na'_l from the nozzle exit and the mass flux entrained into the

jet. that is. intact) = m,._ + m,_n.md(t). A species re-

sponse value of zero indicates that the total amount of species

is eonserve_ Negative or positive species responses corre-

spond, respectively, to destruction or creation of species due
to chemical reactions. According to convention, the mass of

NO. is reported as the equivalent mass of NOa. which is ex-

pressed as re,o. =mso_ +_'so_/W_om,o. where W is the mo-
lecular weight of a species.
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Figure 12 presents the predicted NOx, HNOs, and 03 re-
sponses obtained with various numerical models. As seen

from the NO, and HN03 responses, rapid conversion of NO
and N03 into HNO3 occurs in the near field due to reactions of

OH + NOz + M --* HNO3 + M and NO + O3 ---) N03 + 02.

After 0.5 s, the NO, response remains nearly constant, indi-
cating negligible changes in total NO, due to chemical reac-

tions. The HN03 response is directly correlated with the NO,

response as its production is via the reaction between OH and

NCh. The O3 response shows that a small amount of O3 is

produced via reacdon 0 + 02 + M --_ O_ + M at early jet stage,
leading to a peak 03 response at about 0.05 s (-70 m fi'om

nozzle exit plane). ARer the peak, entrainment process be-
comes important, and the 03 response starts to decrease due to
the dominant destruction reaction NO + O_ --_ N03 + 02 as

more O3 is entrained. The predicted O3 depletion per umt mass

of NO, increases roughly linearly with time or roughly with

downstream distanee. The constant destnaetion of 03 per unit

mass of NO, exhaust is expected as NO, plays the catalytic
role in consuming 03.



12,880 WANG AND CHEN: MODELING OF TURBULENCE AND CHEMISTRY IN PLUME

cY

J

01

•.0.1,

-1 0

0.01

01_

/_M_lm-stream / Mokl exhaust= 01

./:, .. j ....... 8.%,,

I B

D- -- -- -ID I00H*Cg4uH_D*O

e---- - 4 22, NOt *O _ NO ÷Oz

- q 4t 00÷O44 uC_*N

a,-.,--...,,.--_ 43. 0 _ O_ ,, M _ O) * la

-- + Sl OH_NO*M=)HNO)'_M

\
",,..

O.t I t0 IO0

Res_eoce time (S4C)

Mole fcee-stream I Mole exhaust = 10

%

\

\
\

(_ -ors

"6

3"

I
¢/) -030.

445 •

-0¢10

GOt

I 1P-- - -_' le NO* O_ -- k_O_ * Oi
_- .I- $1 C_4 • NO + M -) HNO] + M I
0, - - .053 _*h_Dr-M _ HNO_*M l

I

\
I

t

"5

g

Mole free-_'eam I Mo_ exhah.lt z 1

-tO

0.01

001

\
\

\
\

%

\

--I ,.
I.t I te 100

R _iCence _ (see)

Mole fme-stl_lm f M_e exhaust _ 100

.... :.....
\

\
\

• - - O MOH *NOz _'ld _ HNO)*M

\
1

\
\

O,t I 10 I0_ @_1 0.1 1 1_ lql_l

Resi(:lnece time (8ec) Residence time (lee)

Figure 6. PSR model predictions of sensitivity of 03 species to elementary steps at free-stzeam and exhaust
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Overall, conversion of NO, into HNCh decreases when
more detailed features of mixing processes are included in the
model. The WMR model (similar to a Lagrangian box model)
gives the largest NO= conversion into HNCh since both mac-
roscale and microscale mixing processes are assumed infi-
mtely fast. When microscale mixing is accountad for m the
PaSR, the NO_ response reduces by 3.5%. The PDF jet
simulation with well-mixed assumption for each grid call
(similar to the SPF-II code) includes the rnacroscalc mixing
process that brings ambient fluids into the jet plume through

turbulent convection and stirring. The differences m the NO.
responses between the WMR and the PDF jet model with
completely mixed calls are about 25%. When microscale
mixingisincludedby the modifiedCarl's mixing model,the
NO, responsereducasfun.he_by 5%. Consequently, the
amount of I-INCh produced is largest when infinitely fast
mixing is assumed. The influence of mixing processes at dif-
ferent scales on the predicted Ch depletion is seen similar to
the NO, response except that the trend is reversed. Within the
fu'st 0.05 s, 03 is produced by O + Ch + M ---) 03 + M. The
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Rgure 7. Comparison of PSR model predictions of NO, NO2,
and O3 mole fractions with detailed and reduced mechanisms,

showing good agreement over a wide range of mixtures of ex*
haust and ambient air as a function of residence time.
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Flgu_ 9. Comparison of partiallystirredreactor(PaSR) pre-
dictionsof major nitrogen,sulfur,and oxygen speciesevolu-
tionwith detailed and reduced mechanisms, showing good
a_'ccrnenL

timescaleof chemistryforthe radicalO iscomparable with

thatofmicroscalemixing.A strongcouplingbetween reaction

and mixing isnoticedas theamount ofO3 produced increases

with mixedness of the jet plume. ARer about 0.05 s, the de-

struction reaction NO2 + O3 ---* NO + 02 becomes dominant

due to fast mixing of jet plume with ambient air. Since the

amount of Ch depleted via this reaction is almost the same, the

O3 response curves for each model evolves in an almost par-
allel fashion.

A comparison of the predicted centerline mole &actions of

major speciesand the relativedifferencesobtainedusing the

PDF model with/without Curl's mixing model is presented in
Figure 13. The comparison shows the influence on chemical

kinetics due to microscale mixing only. When the fluids arc
assumed well mixed at the microscale, the point at which en-

trainment becomes important starts earlier. The impact of mi-

croscale mixing at axis is noticeable after 50 m downstream,

where the timescale of chemical reactions for radicals, such as
OH and HO:, is comparable or faster compared with that of

microscale mixing. The impact of micromixing on radicals
affects concentrations of other species since hydroxyl radical

is the driver for major chemical reactions in the near field. In-

clusion of microscale mixing increases predicted H2S04 before
the axial distance of 500 m and the increase reaches about

:-s __ = = : : : = : 03 :
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Figure 8. Comparison of VgMR predictions of major nitrogen,
sulfur, and oxygen species evolution with detailed and re-
duced mechanisms, showing good agreement.
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Figure 10, Centcrlme temperature evolution for probability
density fimction (PDF) jet simulation.
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sulfur, and oxygen species for PDF jet simulation _ith differ-
ent treatment for microscale mixing. Co) Relative difference of
major species between the two models. Relative difference =

(X,,_-X,._/X,-_ x 100 (%), where X denotes mole fraction,
subscript mix means PDF jet simulation with each cell well
mixed, and curlmeans the curl-mixed model.

20% at 100 m. This may have a potential impact on predic-

tions of sulfate aerosol formation which is a subject to be
studied m the future.

Conclusions
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Figure 12. NO,, HNO3, and O3 responses for different nu-
merical models to explore the macromixing and micron'fixing
effects.

Using a PSR model with a detailed reaction mechanism,

the key reaction steps controlling NO,, 03, and OH evolution
have been identified m engine exhaust gas mixed with various
amounts of ambient air in the stratosphere. On the basis of the

detailed mechanism, an eight-step reduced chemistry has been
developed and tested extensively using PSIL WMR, PaSR,

and the PDF jetsimulation.The performancesof the reduced

chemisu3tare found quitegood over a wide range of mixing
conditions.

The relativeimportanceof turbulentmixing at maeroscale

and microscaleon chemistryis investigatedby a parametric

studyusingvariousmodels forthenear-fieldjetplume. For a

typicalHSCT flightcondition,inclusionof macroscal¢mixing
leadstoabout 25% lower NO, conversiontoHNO3 than that

predicted by the WMR model (similar to a Lagrangian

model). In regions close to nozzle exit, O3 is produced via the
reaction O + 02 + M _ O3 + M. The amount of O3 produced

increases with the degree of mixedness inside the exhaust

plume. As such, the WMR model yields highest O3 peak re-
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sponse in the near fieldin comparison with othe_ models. The

impact of macroscale mixing on chemical kinetics is found

most significant in the early development of exhat/st plume

within 0.2 s. Inclusion of microscale mixing causes a slight

delay in the mixing of exhaust species with ambient air. This

impact results in about 5% changes in the overall species/e-

sponses of Os, NO_, and HNO_ across the jet. However, the

influence of microscale mixing on local species e,oncentration

is found to cause nearly 50°,6 differences for highly reactive

radicals in the near field. With the microscale mixing included

in the uumerical model, the predicted centerline peak H_SO,
concentration increases at locations where sulfate aerosol for-

marion could be highly active. The potential inapact of micro-

scale mixing on aerosol formation isa subjectof futurestudy.
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Numerical Studies of Near-Field

Plume-Vortex Interactions

Junxiao Wu" and Suresh Menon t

School of Aerospace Engineering

Georgia Institute of Technology

Atlanta, Georgia 30332-0150

In this study, fluid mixing and chemical reactions in the near-field wake of an aircraft
has been investigated. The plume-vortex regime is studied using a 3D parallel LES code.
Simulations of engine plume interaction with the wing-tip vortex of B737 and B747 have
been carried out and some comparisons with data have been used to demonstrate the abil-
ity of the LES method. Inclusion of detailed gas phase kinetics and simple heterogeneous
processes have been carried out to evaluate the effect of turbulent mixing on the chemical
processes in the plume-vortex regime. Finally, to determine the impact of temporal as-
sumptions (often used in such flow simulations) comparison with spatial simulations are
carried out. Many features of the computed flow field show reasonable agreement with
experimental data. The entrainment of the engine plumes into the wing-tip vortex and
also the partial detrainment of the plume were numerically captured and analyzed. Tile
impact of fluid mechanics on the chemical process has been estimated. Results indicate
that a significant difference between spatial and temporal simulation exists {especially in
tile predicted S03 concentration). This has important implications for tile prediction of
sulfuric acid aerosols in the wake and may partly explain the discrepancy between past
numerical studies and the data. Analysis of the results also show that spatial simulation is
more suitable for the near-field interaction process. For example, it was determined that
detrainment {observed in the 15747 contrail) was only captured using the spatial model.

1 Introduction

The wing-tip vortices shed from an aircraft's wings
are known to pose a danger for aircrafts in the wake

and are considered a major hazard near airports. An-

other consequence of the shed vortices that is perhaps

less appreciated is their ability to entrain the hot ex-
haust of the engine during cruise flight in the upper

atmosphere. The resulting species-rich and relatively

long-lived contrails have been of increasing concern
and a focus of research in recent )'ears because the

species entrained into the vortex wake can react with

the anlbient species thereby changing the local chemi-

cal balance. These studies have been motivated by the

projected increase in future subsonic flights in the up-

per troposphere by the proposed Advanced Subsonic
Transports (AST) operating in the transatlantic and

Pacific rim flight corridors and by the possibility of fu-

ture supersonic flights in the lower stratosphere by the

High Speed Civilian Transport (HSCT).

The near-field region of the aircraft's wake can be

divided roughly into two parts: a plume regime and a
plume-cortea: regime. The plume regime is identified

as the initial region behind the aircraft where the en-

gine exhaust plume grows and mixes with the ambient
air. This regime is typically very short, approximately
I sec after exhaust or around 200 m downstream of the
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engine exit plane. Further downstream is the phlme-

vortex regime where the exhaust plunle is entrained

into the rolled-up wing tip vortices. This regilne is

around 1 - 2 kln long and approxilnately 10 sec down-

stream of the exhaust. Due to the relatively high tenl-

perature of the engine exhaust and the species content.

significant reactions can take place in the plume-vortex

regilne. The region downstream of tile plunle-vortex

region is the wake region where the vortex wake breaks

up due to (Crow) instability and nlixes with the anlbi-

ent air. This region is very large extending over 20 km

and the mixing process Call take many days depending
upon the ambient conditions.

In the present study, the near-field region, especially

the plume-vortex regime is of interest. In particular.

we are interested in the chemical processes that can
occur in this region due to the reaction of the enlit-

ted species with the ambient air (in particular, ozone).

Key species that are of interest here are nitrogen ox-

ides (NO_) (generated from the oxidation of molecular

nitrogen at high temperature), carbon monoxide(C'O)
(due to incomplete combustion), lnethane(CH4), non-

methane hydrocarbons(HC) and soot particles. The

role of these trace species in the atmospheric pho-

tochemical and radiative processes is not very well
understood. For example, the concentration of tro-

pospheric ozone, an important greenhouse gas, is de-

pendent on transport across tropopause and by C}lem-

ical production and destruction involving reactions of

NO_, non-methane hydrocarbons, carbon monoxide.

1
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andhydrogenoxides(HO,:).Furthermore,theradia-
tivebalanceof theatmospherecanbeaffectedbythe
accunmlationof carbondioxideandwater(CO..and
H20 are the primary species in the engine exhaust)

and by the aircraft-induced changes in aerosols and

clouds. Ill addition, the combustion aerosols (soot)

and the binary H"-SO4/H,,O droplets in the plume can
be efficient cloud condensation nuclei and serve as sites

for heterogeneous reactions.

The ozone balance in the upper troposphere and

lower stratosphere can be perturbed by an increase in

NOt and by heterogeneous reactions that take place

on the surface of aerosols. 1'"- In the troposphere, NO,:

acts as a catalyst to produce 03 in reactions involv-

ing the oxidation of methane and other hydrocarbons.
However, in the stratosphere, where Oa is a barrier

to ultraviolet light, NOt catalytically destroys 03 in

reactions involving 0 atoms. Thus, the impact of emit-

ted species on ozone is a function of many variables.

This can complicate long-term prediction of upper at-
mosphere chemical balance.

A variety of models have been developed to assess

the effect of aircraft flights on the atmosphere. These

models generally fall into two categories: "small-scale"

and "global" models. "Snaall-scale" models treat the

near-field regime of the exhaust wake by ignoring pro-

cesses that operate on larger time and space scales.

Global models, 3 on the other hand, attempt to repre-

sent the large spatial scales and ignore, or represent

very crudely, the small scales processes. To obtain

some sort of continuity, some of the global models 3 use

the et_gine exhaust conditions or the data at the end of
the plume-vortex regime as input to their large-scale
models. However, as shown recently 4-6 the concentra-

tion of species (e.g., chemical radicals OH, H02 and

soot) can undergo very rapid changes in the near-field.

This can significantly modify the input conditions for
the far field simulations. Tlms, to obtain accurate pre-

diction of the global chemical balance due to aircraft

emission, the chemical processes in the plume-vortex

regime is very important.

Models for the near-field regime have been de-

veloped by many researchers. The simplest model,
often called the "trajectory box" model, r's ignores

flow transport and focuses primarily on the chemical

species evolution. This type of model has been very

popular since detailed chemical processes can be stud-
ied due to its computational efficiency. Models that in-

corporate both chemical and transport processes have

also been developed. However, some approximations

were employed to reduce the computational expense.
For example, some models 4'9'1° used the well known

SPF-II code 11 which is an efficient parabolic Navier-

Stokes model. Gas phase kinetics, binary H..SOa-

H._O nucleation and aerosol coagulation have been
studied using this model. Gamier et al. l_- used an

integral model and a two-dimensional direct simula-

t ion of convection-diffusion equation to invest igate t he

evolution of the mixing along the wake of a typical
large transport aircraft. Menon and Wu _ developed

a new mixing model that included both micro- and

macro-scale inixing effects and Wang and Chen 5 used

a scalar probability density function model which in-

cluded the large-scale mixing effect but ig,mred the
micro-scale mixing effects. Comparison of these mod-

els was recently carried out 6 and it was demonstrated

that inclusion of both macro- and micro-scale mixing

results in 30% less 03 and 15% less .VO__ depletion in

the near field regime. _

The hydrodynamics of the plume-vortex regime is

also quite complex. For example, the competition

between the vortex centripetal force and gravitation

buoyancy of hot plume can lead to a different final al-
titude of deposition of emissions. "_ This implies that

evolution of the plume occurs in a highly unsteady
manner. However, many of the models noted above 45

are steady-state models and therefore, are unable to

account for the unsteady mixing effects.

To stud)' unsteady jet-vortex iutera(:tious, uusteady

methods have also been used. For example, direct nu-
merical simulation 13 and large eddy simulation ( L ES)

of trailing vortices 14 showed that there exists strong 3-

D instability in vortex wakes with an axial deficit. The

vortex instability results in vortex-stretching which

may have a substantial effect on 01e mixing of je_

plume with the ambient air. Gerz and Ehret t3 used

LES to simulate the vortex roll-up pro_'ess of the wake

of a B-747 one second after exit. They showed that
temperature, relative humidity peak at the center of

the wingtip vortex, the wing boundary layer turbu-
lence and the ambient turbulence all ,'an affect the

plume-vortex interaction process.

Unsteady simulations are computationally very ex-

pensive and therefore, most past studies eml_loyed

some simplifying assumptions. For example, only lim-
ited chemical effects have been investigated so far 1';

and all sinmlations reported so far employed periodic

boundary conditions in the streamwise directions (i.e.
sinmlated temporal evolution instead of the actual

spatial evolution). Temporal approximation is truly

justified only far downstream where the interaction

between the jet plulne and wingtip vortex has been
completed. It has not yet been shown what features

of the flow and the accompanying chemical processes

are different and/or modified by this temporal assump-

tion. This issue is important since it has been shown

that the entrainment predicted by temporal and spa-

tial simulations differ markedly due to the asymmetry
between the high speed and the low speed sides of the

shear layer.t z The impact of this asymmet tic ent rain-

ment on tile chemical processes in the plume-reflex

interaction regime has not been addressed so far.

This paper will address many of these issues and will

attempt to quanti_' tile impact of simulation method-

2
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elegy(i.e.,spatialor temporal)on tilepredictionof
tile speciesdistribution. Furthermore,theeffectof
thefluiddynamicinteractionprocessontilechemical
kineticsandon theconcentrationof speciessuchas
NO, SOd and 03 in the plunw-vortex regime will be

addressed in the presence of both gas and heteroge-
neous kinetics.

2 Simulation Model

Tile simulation model used in the present study em-

ploys the LES method. In LES, scales smaller than

the grid size d,r are eliminated by applying an ap-

propriately chosen low-pass filter G to the flow field

variables. Any filtered field of a quantity f is given

as: "] = fD G(x - x')f(z')dz'. A box filter is used
since it is appropriate for finite-volume schemes, zs Us-

ing the above definition, the original field f can be

decomposed as f = ] + f'. For the compressible

flow equations, a Favre-filter is more appropriate. 19
In this case. the Favre-filtered variable is defined as:

j = oe_-. Tile details of tile filtering operation on tile
Navier-Stokes equations are given in numerous pub-
lications 2°'_-1 and therefore, avoided here for brevity.

Tile LES equations for conservation of mass, momen-

tum. energy and species are, respectively:

0-7+ _,h = o (l)

a

@k o -
o--t-+ _-_,-(P_+ _)'_

O

Ozi (-P-_7,-pai)

(3)

o--/- + (PY*@ )

In the above equations, p is the density, ui is the

velocity component in ith direction, p is pressure, T is

temperature and _¢ is the thermal conductivity. Also,

El,, _'k, i__ are, respectively, the kth species mass frac-
tion, mass reaction rate and diffusion velocity. The

kth species diffusion velocity is determined using Fick's

Lawordiffusionas: _3_= -O_/_;.. ,,'hereO is the
mixture diffusion coefficient. Also. ri---fis the viscous
shear stress determined in terms of the resolved veloc-

ity gradients.
The filtered total energy E per unit mass is defined

as

1 k,g ,
'2 = i + :_ _h_h + (5)

where the subgrid kinetic energy, k'_', is defined as

k,g _ 1
= -_(uiui- ai,h) (6)

Finally, the LES equation of the state equation is

p = _R7 _ (7)

In the above equation, R is the mixture gas con-

stant given as _=_ _,R_/IV_. where R, and It),. are
the universal gas constant and tile species molecular

weight for kth species respectively, and .V is tile total

nmnber of species.

2.1 $ubgrid Closure of the LES Equations

The above LES equations contain many terms that

arise due to the filtering process and represent the

effect of the unresoh,ed subgrid fluctuation correla-
tions on the resolved motion. Models for these un-

known terms must be devised to complete the LES

formulation. The key subgrid terln that requires

determination is the subgrid Reynolds stress term:
Sgs

rij = )[u-_ij - _i(tj] and the subgrid enthalpy flux

H?_' = fi[gu----,- Hiid. nere. H = E + r/P is the
stagnation enthalpy per unit mass.

A subgrid eddy viscosity closure is typically chosen

for closure of the monaentum and energy subgrid fluxes

sitlce the small scales primarily provide dissipation for
the energy transferred from the large scales. To de-

termine the eddy viscosity, characteristic length and

velocity scales must be defined. The grid size is typi-

cally chosen as tile length scale and tile velocity scale

in the present study is obtained by solving a transport
equation for the subgrid turbulent kinetic energy, k ''_'.

Without going into the _letans," '-- the final equation

for subgrid kinetic energy is given as:

oqpk ,g" 0 0 0]¢ sgs

0-'--'[-"+ -_-_z_(¢a_k'_') - Oz, (pv, _ )

+P_.,j, - D_..,_, (8)

In this equation, the three terms on tile right-hand-side

are respectively, the transport term. the production
_. 7- sgs - .term, P_,_s - ij Otti/O'rj and tile dissipation term

Dksgs -- c_p(kSgs)3/2/,-X. Here, A is a characteristic

grid size. Once the subgrid kinetic energy is deter-

mined the subgrid stress tensor, r,__' can be obtained
as:

s_s _ _, 1 - 2 , ,
r,j _. -2pvt(_ij - _,5\.k_i_) + :._F_'_'g'_. (9)
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where ,_,j = ½(_ + 0_,, is the resolved rate-of-strain
tensor and vt is the subgrid eddy viscosity which is

approximated as vt _ cv_-k, where ev is a model

coefficient. Similarly. tile subgrid enthalpy flux term is

modeled as: 7H u'--'i- -_fI di = -ce-fi_A-_, . Here,
c,,. c_ and ce are unknown coefficients that must be

specified to close the system of equations. Typically,

ce is modeled as c_/Pvt where the turbulent Prandtl
number was chosen as 0.9. The method used to eval-

uate these coefficients is described in the next section.

Closure of the species equation requires closure of

the subgrid term: pYkuj -7lr_.dj. A subgrid diffusiv-
ity model (as the eddy viscosity mode} given above)
is not considered an excellent choice since for com-

bustion to occur species must first mix at the small

scales and then, molecularly diffuse. These processes

occur at the unresolved scales and therefore, a global

eddy diffusivity model for the subgrid species flux that

ignores the subgrid processes requires some justifica-
tions and can be used only under certain conditions.

In the present study', the mixing process is dominated

by the large-scale transport of the plume species into

the wing-tip vortices. Furthermore, the time-scales

for the subsequent chemical reactions are quite large

(i.e., slow chemistry). Thus, the fast time small-scale

mixing effects can be considered completed before the
chemical reactions occur. For these reasons, an eddy

diffusivity model for the species subgrid flux is con-
sidered a reasonable first-order approximation. With

these commeuts in mind, the subgrid species flux is

approximated as:

7_'t O',_ (10)
pY_ u_ - 7_ _j = Sc r Ox_

where Sc r is the turbulent Schmidt number set to

unity for the present study.

2.2 Dynamic Evaluation of the Coefficients

The model coefficients c_,, ce and ce are obtained us-

ing a dynamic approach. The details of the dynamic
approach has been reported elsewhere 21 and therefore,

is only briefly sulnmarized here. To obtain the model

coefficients, we assume that the subgrid stresses at the

grid filter level and the resolved Leonard's stress at
the test filter level with a characteristic grid size A

(at twice the grid filter) are similar. Scale similarity

between rij and Lij has been observed in some ex-

perimental data. "a Using this similarity, the model
coefficients are obtained from the following relations:

Ct : /k (lA Of- I.Q/7)d test (ktest)_3/2 (11)

- Lij Dij
c,, - (1_)

2 Dij Dij

nidi
c, = -- (la)

didi

where

]¢test ! ( (7fii_li> (7_),'> (P/'ti>)2 (7> (7) (7)

d'-' /oa, 0 ((>,>)=\0,,a_, -_\ (7))_',(7))

The Leonard stress at. the test filter level is

_ . _--"z--.
1 _. pUkpUl,.

Lij = -fiui_dj puipuj_ -_(-fit[ktt k =p )d,j (14)

and

A

^ ^ --T-o_j) (1_)27 7
Dq = A_( pu_n

Finally,

ni = 7H di - -_H'fiT (16)

and

The ability of this type of closure to obtain accurately

the LES field for a wide range of test problems in

both incompressible and colnpressible flows has been
reported in the past. 2°'-'1 It has also been shown in

these earlier studies that predicted subgrid stresses us-

ing this model satisfies all the realizability conditions

proposed by Schumann. 24 This implies that since r;)_'
is a positive senti-definite tensor, the modeled term

for r[_g" should also be positive semi-definite. This re-
quirement results in the following inequalities:

i_)

,-.'/' > 0.i_ {t.m3}.

< r, rjj .i,je {1.2. a}.

det(r?ff) >_ O.

that must be satisfied. The above inequalities yield

certain bounds for c_ which must be imposed in the

sinmlations. The present implemematiou of the dy-
namic model ensures that these requirements are satis-

fied during the entire simulation. Analysis shows that
this criteria is automatically satisfied in over 95(7( of

the grid points during the entire simulation.

3 Numerical Method

An explicit finite-volume scheme that is fourth order

accurate in space and second-order accurate in time
was used in the present study. The details of the nu-

merical scheme has been reported elsewhere "-t-'-" and

therefore, avoided here for brevity. The current ap-

proach is similar to the implementation described by

Garnet and Estivalezes 2s except that the fluxes are

modified so that a truly fourth-order accuracy m space

is obtained at least on an uniform grid. The details of

this implenientatiou are given hi. -22
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Tile presentcode has been parallelized using the

standard Message Passing Interface (MPI) library.

This allows simulation on a variety of platforms with-

out. any changes to the code. Domain decomposition

method is employed whereby the computational do-

main is decomposed into subdomains and assigned to
different processors which have an identical copy of

tile numerical algorithin. For tile current scheme, a

five point stencil is used and therefore, two rows of

variables must be exchanged in either direction. Tim-

ings analysis of this code on various parallel machines

(e.g., Cray T3E, SGI Origin 2000) shows that the code

achieves nearly linear speedup as the number of pro-
cessors is doubled. However, depending upon the total

number of grid points employed there is an optimum

number of processors beyond which the message pass-

ing overhead overtakes the computing time in each

processor's domain.

For a 121 x 97 x 97 computational grid a typical sim-

ulation (using 15 reactive species) on the Cray T3E

takes around 5000 single processor hours to obtain

data sufficient for statistical analysis (5 flow through

time). The CPU time per time step per grid point was

around 3E-6 sec on 128 processor T3E (or 3.6 sec per
time step).

Two types of problems are studied in the present

study. Both are in the plume-vortex regime. Figures

la and lb show respectively, the plume-vortex domain

behind a Boeing 737 and a Boeing 747 aircraft. The

primary differences are in the span. the number of en-

gine plumes and the exhaust conditions. These two

configurations were chosen primarily because there is

some data available for comparison.

For slip or symmetry conditions, values are pre-

scribed for ghost cells such that gradients normal to
tile face at the bounding face are zero. Periodic bound-

ary conditions are prescribed in the streamwise direc-

tion (for the temporal simulations).

For tile spatial cases, the inflow and outflow bound-

aries are more complicated and must be carefully im-

plemented. We employ a method that attempts to

provide reasonably accurate inflow turbulence statis-
tics."-"-' "-6 The inflow is critical for the spatial case since

it determines the turbulence entering the computa-

tional domain. A turbulent inflow field is generated

based on a prescribed energy spectrum and turbu-

lence intensity and then superimposed on the mean
field. The turbulence spectrum chosen is of the form

E(k) = Ck4exp(-2(k/kp) 2) used by Lee et al, _7 where
constant C is chosen as turbulence intensity level. The

turbulence is divergence free and non-periodic in time.

The field is stored as 3D array from which a 2-D plane
is introduced at the inflow at every time step. At least

10 different arrays of 97 × 97 × 97 are stored and to

ensure that the inflow field is not correlated, at ran-

domly chosen instants, the phase in the Fourier modes
were randomized. Additional details of the turbulence

Table 1 Aircraft parameters for the near field
plume-vortex calculations of B747 and B737 data.

type wing maximum

span circulation

B747 60m 000,n"/s

[3737 30m 100m_/s

vortex
core radius

vortex

separation

4m 54m 9m/I,'q_
2m 26m 5.35m

Table 2 Initial conditions for the near field plulne-
vortex calculations of B747.

B747

Plume Condition

500K

247
0.17

Ambient Condition

217I(

0.0
0.17

Temperature

velocity(m/sec)

pressure(atm)
mole fraction

2.4x10 -5

3.2xI0-",

1.0xl0 -6

0.159

1.0xl0 -5

3.0x10-",

0.779
4.3xI0 -.5

4.8x10 -s

0.0

0.0

0.0
6.9x10-';

0.0

0.0

2.0x10 -s

3.5x10 -4

5.2x10 -z

0.2098

2.8x10 -13

4.8x10 -'_

0.789
5.9x10 -ll

4.3x 10- lo

0.0

3.3x10-'

0.0

0.0

0.0
2.5x10 -r

CO

CO"-

H"-

O"-
OH

H"-O

NO

.VOw.

N",O_

HNOa

HONO

SO..

SOl

Oz

inflow are given elsewhere."-..

The outflow boundary is non-reflecting character-

istic boundary conditions. ",s The amplitudes of the

outgoing waves are computed based on the interior
points and the anaplitude of the incoming wave is con>

puted by specifying the background pressure. Details

of this type of outflow condition is given elsewhere.

Tile wing-tip vortex is modeled by the Lamb-Oseen
vortex ",s with an axial velocity deficit. This model

has been extensively used l"--t4,29-at for earlier studies.
The location, core radius, maxinmm circulation data

of tile wing-tip vortex and the engine location and exit

conditions (Table 1 and 2 summarize these conditions)

are chosen according to the aircraft configurations.

4 Results and Discussion

In this section, we summarize the results obtained in

tile present study. There are three primary objectives

of this study. First, comparison with available data

is carried out to demonstrate the ability of the sim-

ulation model to accurately capture the evolution of
the plume-vortex regime. Second. the results obtained

using temporal and spatial methods are compared to

5
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identifywhatfeaturesarenotpredictedaccuratelyus-
ing temporalsimulations(asnotedearlier,nearlyall
previouslyreported3Dstudiesemployedperiodiccon-
ditionsin thestreamwisedirection).Thefinalobjec-
tiveistodeterminetheimpactofturbulencetransport
ontheformationof sea- and tile destruction of ozone.

Before discussing the details of tile plume-vortex in-
teraction, the effect of different inflow turbulence on

tile flow field is briefy summarized. Figure 2 shows

the effect of inflow turbulence on tile scalar (here S02
concentration is used as a scalar marker) decay with

increasing plume age in a B747 plume-vortex region.
Three different inflow turbulence conditions are used.

Two conditions employed the same energy spectrum

but with 5% and 10% turbulent intensity, respectively

while the third case used tile same initial isotropic

spectrum as other two but is introduced into the flow

field after evolving for certain time with a final tur-

bulent intensity 5_,. Thus, in the third case, the in-

flow has evolved to a more realistic turbulent isotropic

state, whereas in the first two cases the field is isotropic
but. is not realistic turbulence.

It can be seen that the cases with the same tur-

bulent intensity yield almost identical results. This

means that the effect of evolving of the inflow turbu-
lent field is small at least for the global measure used

here. (Note that such global measures are of interest

here). However. it can be seen that turbulent inten-

sity does/lave an effect on the flow field. This implies
that the inflow turbulent intensity must be carefully

chosen. The turbulence intensity in the vortex and jet

plume varies with flight conditions such as climate, al-

titude and ambient flow field. A turbulent intensity

between 5_ and 10c7¢ is very common in the typical

flight path of interest. Thus, simulations with 5% and

10_, inflow turbulence may be used to quantify an up-

per and lower bound for the species distributions in

actual flights. Interestingly, the descending vortex ve-

locity computed from these three cases showed similar
results. However, this is understandable because the

descending vortex velocity is mainly determined by tile
overall vortex circulation and small scale turbulence

exerts negligible effect on the circulation. The numer-

ical sinmlation of q-vortex by Ragab and Sreedhar 29
also demonstrated this feature.

4.1 Plume-Vortex Interactionbehind a

Boeing 737

For quite some time under the Atmospheric Effects

of Aviation Program, NASA has been conducting mea-
surements in the wake of actual aircrafts. Some data

based on ground based LIDAR measurements in the

wake of a Boeing 737 is currently available for com-

parison. More data is expected in the near future for
additional comparison.

Figure 3 shows some typical comparison of the wake
LIDAR data with the present calculations. These sin>

ulations were performed using 61xl01xl01 grid points

and using the temporal method. The initial condi-

tions and computation domain was chosen to match

the data for B737. For comparison, identical location

(i.e., plume age), domain size and contour distribution

is used in these figures. The chosen location is approx-

imately lkm downstream of the engine exhaust (at a

plume age of 5 seconds). Some interesting features can
be discerned from this conlparison. Note that. the nu-

merical study enforced symmetry along the aircraft

center-plane primarily to reduce the computational

cost (see Figure la). As a result, the numerical result

shows a symmetric image (obtained by inirror imaging

the data) whereas the experimental data shows sonle

asymmetry. In spite of this difference there is quite

a bit of similarity in tile predicted and tire measured
vortex structure. These features are discussed below.

First, the scale (size) and the location of the com-

puted structure is in good agreement with data. Tile

separation distance between tile vortex pair at this

demonstration location is predicted quite accurately

even with symmetry boundary condition. Second. the

structure of tile vortex with its trailing tail (which is

the jet plume as it gets entrained) is quite sitnilar. In

both the experimental data and in the present simu-
lation, the concentration variation in tile core of the

vortex is very sznall, However, there is relatively a

large variation in the outer region of tile vortex. This

implies that tile core of the vortex has a stabilizing

effect and inhibits the dilution of the passive tracer.
Tile turbulent small-scale structures seen in tile exper-

iments are captured by the present study. On tlle other

hand, the earlier comparison reported using tile [NI-
WAKE method 16 did not yield this type of detail on
the vortex structure arid showed a scalar field that was

more concentrated and coherent than tile experimental

data since the small scale mixing effects are neglected.

The more reasonable agreement between the present

LES and the data suggest a potential advantage of

carrying out full 3D LES where the unsteady mixing

effects are explicitly simulated.

We expect to carry out additional comparison with
LIDAR data when it becomes available in tile near

future.

4.2 Plume-Vortex Interaction behind a

Boeing 747

The LES model was also used to study the B747
wake. The key differences between tile B737 and B747

are in the appropriate scales, flight conditions and tlle
presence of two engine plumes for the B747. These

simulations were carried out using both temporal and

spatial methods to facilitate direct comparison. The

temporal simulation captures a regiou of plume-vortex

evolving in time which corresponds spatially" (via a ve-
locity transformation) to a location that moves (with

increasing time) in the downstream direction. A grid

6
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resolutionof 121x 97x 97isusedforbothspatialand
temporalsimulations.Forsomesimulations(ofanex-
tendeddomain)a resolutionof 201× 111× 111was
employed.Thedomainsize(unlessotherwisenoted)
is 24sin streamwisedirectionand2.5sin othertwo
directions.Here.s is the aircraft's semispan. Only

one-half of the wake regime is simulated by employing

the symmetry boundary conditions at the wake center

plane.

4._.1 Comparison with experimental data

Figure 4 shows a comparison between present spatial

and temporal simulations of the passive tracer con-

centration on a cross-section of the plume/wake at a

distance of 30 senti-spans downstream of the aircraft.

The plume age is about 5 seconds. As seen earlier in
Figure 3, large-scale structures are seen in both the

data and the LES. The wing-tip vortex and entrain-

ment tail of the jet plumes can be clearly seen in the
present computation. Again, the concentration varia-

tion in the core of the vortex is very small even for the

twin plume interaction for the B747. More, turbulent
small-scale structures are seen for the B747 due to the

interaction between twin plumes with the vortex.

A key difference is seen between the temporal and

spatial data in the structure of the plumes as it gets en-

trained into the vortex. It appears that a large portion

of the inboard plume is still very distinctly separated

from the vortex for the spatial case whereas in the tem-

poral case the inboard plume is also getting entrained

into the vortex. The implication of this difference is
discussed in the next section.

The descending vortex velocity is relatively steady

within the computational range. The computed de-

scending vortex velocity for spatial simulation and

temporal simulation are 0.90 m/s and 0.86 m/s, re-

spectively. From the data by Teske et al., 16 the de-

scending vortex velocity is around 0.93 m/s between
about 15 and 40 semi-spans which is in agreement with

present simulations.

Figure 5 shows the comparison of the averaged SO_,

scalar concentration decay with increasing plume age.

Here, SO,. is a marker species present initially only in

the plume and therefore represents the transport and
entrainment of the plume into the vortex. The current

result has been normalized by the SO_ concentration

value in Teske et al. 16 at plume age 1 second in order to

compare the dilution process between the two models.

This was required since the present simulation starts
with a different initial scalar concentrations when com-

pared with Teske et al. t6 The reason is that there is

no experinaental data at a plume age of 1 second and
the inflow setup in Teske et al. 1_ and the present LES

are not similar. The averaged passive scaler concen-

tration is defined as the volume average of the cells
which has at least one percent of the local maximum

concentration. This definition was also used by Teske

et al. ts

The decrease in SO_. concentration is mainly due

to mixing with ambient air because the reaction rate

for S02 destruction is small. The current spatial and

temporal simulations are in good agreement, but there

is a discrepancy between present study and the ro-
sult obtained using UNIWAKE. t_ The current result

shows a much larger initial decay rate than the UNI-

WAKE result. The experimental measurements by
Arnold et al. 3_"also showed that a lower value of SO__

at a distance of 2kin downstream of the plane than the

prediction by Teske et al. is The current prediction in

that region shows a better agreement with data. As
Teske et al. 1_ noted, the limitation of the turbulence

model used in UNIWAKE may be contributing to this

discrepancy. In the present LES with the dynamic

sub-grid model the turbulent viscosity is dynamicly

computed and adjusts to varying strain rate of the

mean flow (i.e., different age of the plume). Thus.
better comparison with the experimental data is ex-

pected and can be observed in this figure, It can also

be argued that the more accurate resolution of the

turbulent small-scale structures in the LES improves

the prediction since turbulent diffusion plays a large

role in scalar nfixing. In contrast. UNIWAIeE predi,'-

tions ignore the small scale mixing effects. This may

contribute to the under-prediction of average scalar
concentration decay.

4.:2.2 Detrainment of the exhaust plume

Figures 6a, 6b and 6c show respectively, three in-

stantaneous vorticity magnitude contour plots in the

x-z plane at y=0 from the spatial simulation. The two

jet plumes develop almost independently before the

first 4 senti-spans. After 4 senti-spans, the outboard

jet plume starts to get entrained into the wing-tip vor-

tex, and the jet plume is deflected iowa rds the wing-tip

vortex. Further downstream, the two jet l_lumes break
up into smaller structures. This is characterized by

patches of concentrated vorticity which are surrounded

by flow with much lower vorticity.

The high level of intermittency seen in the flow field

makes Reynolds averaged approach inapplicable since

it cannot capture this effect. It can be seen that the

broken portions of the outboard jet plume are de-

flected and entrained into the wing-tip vortex. On the

contrary, due to the strong turbulent motion and rela-

tively weak influence of the wing-tip vortex, a portion

of the inboard jet plume gets detrained from the wing-

tip vortex. Observation of contrails from widebody
planes such as B747 show that there are two contrails
behind the aircraft, one that is the tlormal vortex core

contrail and another that is distinctly separated from

it. As Gerz and Ehret is pointed out. irregular roll-

up of wing-tip vortex, turbulent motion and buoyalwy
may result in detrainment. Gerz and Ehret t'5 failed

to capture detrainment in the near field by inc[uding
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buoyancyeffect.Also.thedetrainmentcapturedby
Quackenbushat el. 31 was only ill the far field. Present

simulation suggests another reason for detrainment.

This is the effect of turbulent mixing which breaks up

the inboard jet plume before it gets entrained into tile
vortex. This in turn forms the detrained contrail as

seen in Figures 6a-c.

The instantaneous NO mass fraction field corre-

sponding to Figures 6 are shown in figures 7a, 7b and

7c, respectively. In these simulation, the species do
not to have a strong effect on the fluid flow because the

reactions release ahnost no heat. As a result, the corre-

lation between the NO mass fraction and the vorticity

magnitude is very strong. Since the reaction rate for
NO species is relatively small, the NO mass fraction

distribution can be used to represent the overall plume

mixing process. The entraimnent and detrainment of
the NO species are thus similar to the vorticity field.

It is worthwhile to point out that previous numerical

studieQ s,31 failed to capture the plume breakup and

instead showed a smoothly varying plume species field.

This can result in error in entrainment prediction.

Figure 8 shows a 3-D snapshot of the instantaneous

vorticity magnitude isosurface with NO mass fraction

contour. The sequence of the plume-vortex interaction

starts with the break-up of the jet plumes. By the mid-

dle point (x=12s). the two jet plumes have broken up
completely and part of the outboard jet plume starts

to get eutrained into the vortex. At the end of the

interaction, a major part of jet plumes has been en-

trained into the wing-tip vortex. However, a portion
of the inboard jet plume is detrained from the vortex.

The simulations by Gamier et al. 12 showed that

the outboard jet plume scalar concentration decays

faster than the inboard jet plume. They attributed

this phenomenon to the wing-tip vortex effect. How-
ever, the current sinmlations show that both inboard

and outboard plumes have ahnost the same decay rate

even though the outboard plume is deflected toward

the wing-tip vortex. When the outboard plume in-

teracts with the wing-tip vortex, due to the shear in
the flow, strong turbulence is produced. As a result,

scalar mixing is enhanced and therefore, faster decay

may be expected. However, when part of the plume is
entrained into the core of the vortex, due to the inher-

ent stability of the vortex core region, scalar mixing is

slowed down. These two contradicting effects result in
similar mixing rate for the outboard and the inboard

plumes.

Another explanation for the results obtained by

Gamier et al. 12 is related to the well-known over pre-

diction by the k- e turbulence model. The over

prediction of the overall S02 decay rate by Gamier
et al. i-_ is also attributed to k - e turbulence model.

Figures 9a and 9b show respectively, two instanta-

neous cross-section flow field of the vorticity magni-
tude contour plots at the downstream location 12s and

24s (s is the semi-span) from the temporal sinmlation.

Figures 10a and 10b show the corresponding vorticity

contour from the spatial cause. There is great variety

in the instantaneous cross section but these figures are

very representative. At 6s. the two jet phunes become
turbulent and the interaction between the outboard

jet plume and wing-tip vortex starts (not shown). At

12s, the two jet plumes begin interact with ea,'h other

and merge. However, some part of the outboard jet

plume gets entrained into the wing-tip vortex. For the
spatial case, at 18s (not shown), a large portion of

the outboard jet plume is entrained into the wing-tip

vortex while a major portion of the inboard jet plume

stays separated.

The detrainment of the inboard plume continues as

shown at x=24s and is more apparent ill the spatial

case than in the temporal case. Although there exist

highly turbulent structures around the wing-tip vor-

t.ex, the core of wing-tip vortex remains coherent and
laminar. This overall observation of the plume disper-

sion is quite similar to the results obtained by Sykes
and Henn 33 and Sykes et. al.fl 4 except for the addition

of wing-tip vortex in present study.

Comparison of the temporal (Figs. 9) and the spa-

tial (Figs. 10) cases show some significant differences

even through the overall entrainment process is qual-

itatively similar. For example, in the temporal cases.

the entrain,nent process is not very well defined in

comparison to the spatial case. The detrained plume

for the spatial case is also lnuch more coherent than

in the temporal case (also shown in figure 4). Tile
inability of the temporal simulation to capture the de-

trainment process is due to the fact that detrainment

occurs right behind tile aircraft where tile periodic as-

sumption is not satisfied. This observation suggests

that to capture the observed detrainment of the plume.

spatial sinmlations are required.

_.2.3 Comparison between spatial and t_mporal
s_m ulations

Some differences between temporal and spatial sim-

ulations have been noted above. Namely. the spatial

simulation is able to capture detrainment effects while

the temporal case could not. This was attributed to

the fact that in the early stages of plume-vortex rater-

action periodic assumption in the streamwise direction

may not be appropriate. Here. to filrther quanti_

the results additional entrainment quantities are com-
puted and compared. Figure 11 shows the detrainment
ratio from the vortex core. The detrainment ratio is

defined as the percentage of representative species .VO

outside the wing-tip vortex core which has a radius

about, 4m. The vortex center is located by finding
the point where the mininmm axial vorticity occurs.

Initially, the detrainment rate is 1.0. The spatial and

temporal simulations show similar trends however, the
spatial simulation data has some oscillations. Tile os-
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cillationsof tile spatialdatacouldbeattributedto
tile random wandering of wing-tip vortex which has
been observed ill the experiment by Davenport et al. 35

Thus, it would appear that spatial simulation is able

to capture this random wandering effect.

As the plunae begins to get entrained into the vortex
core, the detrainment ratio decreases. This decrease is

large in the frst 12s and then levels off. This indicates
that part of tile plunle has overcome tile attraction of

the wing-tip vortex after 12s. This also can be seen

in figure ra, rb and 7c where there is an apparent

separation of jet plumes after 12s. The detrainment
reaches a final value of around 0.87. Therefore, about

13 percent of jet plume is entrained into the core of

the wing-tip vortex.

In the vortex core, the temperature is about 8 de-

gree higher than the ambient temperature. Note that
without entrainment of the hot jet plunles, the temper-

ature inside the wing-tip core should be a few degree

lower than the ambient temperature due to the lower

pressure inside the vortex core. Due to entrainment,

the temperature of vortex core is increased. The sev-

eral degrees" increase of temperature is critical when
chenlical reactions are included. This difference in

temperature indicates that the entrained plume un-

dergoes a different chemical reaction path, e.g., via the

heterogeneous reactions when compared to the portion
that is detrained fronl the vortex. The previous stud-

ies 1_'al showed only a fully entrained plume without

any details of the structure inside tile vortex.

It is interesting to track the different dilution pro-

cesses of plume species inside and outside the vortex

core since there is a lower pressure zone inside the vor-
tex core and the fluid feld is more stable inside the

vortex core. It is well known that the conditions for

contrail formation are very subtle and a little differ-
ence in the thermodynamics and fluid dynamics can

result in widely different contrail formation. Figure 12
shows the maximunl NO mass fraction inside and out-

side tile vortex core versus downstream distance. Both

spatial and temporal results are compared. Inside the
vortex core, the maxinmm NO mass fraction is almost

constant after it reaches the maximum. While, outside

the vortex core tile maxinmm NO mass fraction drops
very fast in tile first 12s. The reason is that turbulent

diffusion is very large outside the vortex core due to the

enhanced mixing effect due to strong turbulence where

jet plume breakdown occurs. On the other hand, the

vortex core is relatively stable due to the swirling effect
of the wing-tip vortex. After 18s, when the turbulence

begins to die down due to dissipation, the NO concen-

tration begins to level off. Comparisons of the spatial
and temporal results show that on the outside max-

imum ,VO nlass fraction agrees very well. However.

inside the vortex core, the temporal simulation shows

a higher peak than the spatial simnlation (by around

_5_7().

Figure 13 shows the axial variation of ,VO mass
fraction at vortex center. Although the spatial and

temporal simulations show similar trend, tile spatial

simulation shows a much higher mass fraction than

the temporal silnulation. From figure 12 and 13, one

can conclude that the species distribution inside the

vortex core predicted by the temporal simulation is
more spread out around the core center than the pre-

diction by the spatial simulation. This implies that
the reaction rate in the temporal simulation is slower

than that in the spatial simulation.

Figure 14 shows the variation of S03 mass fraction
at vortex center with downstream distance for both

spatial and temporal simulations. In the spatial sinlu-

lation, SOn nlass fraction first increases and then levels

off near 24s. On the other hand, in the temporal sim-

ulation, S03 mass fraction reaches a peak at around

12s and then decreases. There are significant differ-

ence in tile magnitude of peak S03. The spatial data

shows 10 -s where as the temporal data shows 10-11

Tile wide discrepancy between temporal and spatial

results has mlportant inlplications for heterogeneous
reactions and for H2S04 aerosol fornmlation. This is

briefly discussed below.

Note that S03 is produced first by the oxidization

of S02 and then prinlarily renloved by heterogeneous
reaction on condensed soot particles. The condensa-

tion inside the core ulay be small due to the lower

pressure. As a result, the removal rate of.S'O3 is small

so that S03 mass fraction can keep increasing dowu-

stream. The nlagnitude of the _,_O3 mass fraction is

thus deternlined by the rate of S02 oxidization reac-

tion which is strongly affected by 502 mass fraction.

As figures 12 and 13 suggest, tile spatial data has a

higher species concentration around tile vortex _:enter

than the tenlporal data. This explains the higher _'O3
concentration in the spatial simulation. These differ-

antes between the spatial and temporal sinmlations

show the necessity for spatial sinlulation.

Tile implication of the higher concentration of SOn

is that it could result in an increase in the H2S04

aerosol formation. Although this feature has not been

included here, tile present spatial LES prediction ap-

pears to partly explain the discrepancy between ex-

perimental data and earlier numerical studies. As

noted earlier, a6 data suggests a 45 times higher H2S04
aerosols concentration in the vortex-plume than the

earlier calculations (using SPF-II type of code). The

present prediction of higher S03 concentration ob-
tained by doing a spatial simulation (in contrast to

telnporal or parabolic space marching) seems to sug-

gest that this discrepaz_cy may be partly due to the

numerical approach. However, to confirm this we need

to carry out these simulation including H2S04 binary
nucleation and coagulation aerosol models. This effort

is underway and will be reported in the near future.

Some integrated quantities are also analyzed as fol-
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lows. Tile massof entrainedNO into the wing-tip

vortex is shown in figure 15. Temporal simulation
shows a larger amount of NO is entrained than tile

spatial simulation. Since the relative reaction rate for

NO is small, NO entrainment can be used to repre-

sent the eutrainment process. The difference between

the spatial and temporal simulations can be due to the

axial velocity deficit of the jet plume. The deviation

between the two types of sinmlations begins around

a" = 12s, where most of outboard engine plume is en-

trained into wing-tip vortex and the inboard engine

plume splits into two parts. One part eventually gets

entrained into the wing-tip vortex while the second
part becomes detrained from the wing-tip vortex. The

chemical processes that result due to the NO concen-
tration will be different in these two regions.

Other integrated quantities of species also show sig-
nificant deviation when the two simulations are com-

pared. Figure 16 shows the mass entrainment of SOs

into the wing-tip vortex. The result of spatial simula-

tion shows a higher peak than the temporal simulation

and shows an overall larger entrainment. This leads
to the conclusion that the temporal simulation is not

suitable for the early plume-vortex interaction region
because there exists no periodicity in the interaction

region. The discrepancy in the SOs concentration in

the vortex is particularly bothersome as noted ear-
lier. The increased number of aerosol measured in the

wake 36 and the potential increase in the condensed

sulfuric acid (due to the reaction between S03 and

condensed water) forming on these particles have been

identified as one process that could impact long term

global atmosphere chemical balance.

5 Conclusions

Iu this study, fluid mixing and chemical reactions
in the near-field wake of an aircraft has been inves-

tigated. The plume-vortex regime is studied using a

3D parallel LES code. Simulations of engine plume

interaction with the wing-tip vortex of B737 and B747
have been carried out and some comparison with data

have been used to demonstrate the ability of the LES

method. Inclusion of detailed gas phase kinetics and

simple heterogeneous processes have been carried out
to evaluate the effect of turbulent mixing on the chem-

ical processes in the plume-vortex regime. Finally, to

deterlnine the impact of temporal assumptions (often

used in such flow simulations) comparison with spatial
simulations were carried out.

,Many features of the computed flow field show rea-

sonable agreement with experimental data. The en-

trainment and detraimnent of engine plumes into the

wing-tip vortex were numerically captured in the spa-

tial simulation and analyzed. The impact of fluid
mechanics on the chemical process has been estimated.

Results indicate that a significant difference between

spatial and temporal sinmlation exists (especially in

the predicted SOn concentration). This has important

implication for the prediction of sulfuric acid aerosols

in the wake and may partly explain the discrepancy

between past numerical studies and the data. Anal-

ysis of the results also show that spatial simulation

is more suitable for the near field interaction process.

For example, it was determined that detrainment (ob-
served in the B747 contrail) was only captured using

the spatial model.
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Abstract. Species mixing and chemical reactions ill the near-field wake of an

aircraft have been investigated using a large eddy simulation (LES) model. Simulations

of the interaction between engine plumes and the wing-tip vortices of B737 and

B747 have been carried out and comparisons with available data have been used to

demonstrate the ability of the LES method. The effect of turbulent mixing on the

chemical processes in the plume-vortex regime has been studied using detailed gas

phase and simple heterogeneous kinetics. Finally, to determine the impact of teml_oral

assuml)tions (often used in such flow sinmlations) comparisons with spatial sinmlations

were carried out.

Many features of the computed flow field show reasonable agreement with

experimental data. Analysis of the results also shows that spatial simulation is more

suitable for the near field interaction process. The entrainment of engine plunles into

the wing-tip vortex were nulnerically captured in the spatial simulation and analyzed.

However. detrainment (observed in the B747 contrail) was only captured using the

spatial model. Results indicate that a significant difference between spatial and temporal

simulation exists, especially in the predicted S03 concentration. This has important

implication for the prediction of sulfuric acid aerosols in the wake and may partly

explain the discrepancy between past numerical studies and measured data.
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1. Introduction

Tile wing-tip vortices shed from an aircraft's wings are known to pose a clanger

for aircrafts in the wake and are considered a major hazard near airports. Another

consequence that is perhaps less appreciated is their ability to entrain the hot exhaust of

the engine during cruise flight in the upper atmosphere. The resulting species-rich and

relatively long-lived contrails have been of increasing concern and a focus of research

in recent years because the species entrained into the vortex wake can react with the

ambient species, thereby, changing the local chemical balance. These studies have been

motivated by the projected increase in fitture subsonic flights in the upper troposphere

by the proposed Advanced Subsonic Transports (AST) operating in the transatlantic

and Pacific rim flight corridors and by the possibility of future supersonic flights in the

lower stratosphere by the High Speed Civilian Transport (HSCT).

The uear-field region of the aircraft's wake can be divided roughly into two parts: a

plume regime and a plume-cortex regime. The l_lume regime is identified as the initial

region behind the aircraft where the engine exhaust plume grows and mixes with the

ambient air. This regime is typically very short, approximately 1 sec after exhaust

or around 200 m downstream of the engine exit plane. Further downstream is the

plume-vortex regime where the exhaust plume is entrained into the rolled-up wing tip

vortices. This regime is around 1 - 2 knl long and approximately l0 sec dowustream

of the exhaust. Due to the relatively high temperature of the engine exhaust and the

species content, significant reactions can take place in the plume-vortex regime. The

region downstream of the plume-vortex region is the wake region where the vortex wake

breaks up due to the Crow instability and mixes with the ambient air. This region is

very large extending over 20 km and the mixing process can take many days depending

upon the ambient conditions.

The near-field region, especially the plume-vortex regime, is of interest here. In

particular, we are interested in the chemical processes that occur in this region, l(ey



speciesof interest arenitrogen oxides(NO_), carbou monoxide(CO), methane(('H4),

non-methanehydrocarbons(HC) and soot particles. These trace speciesplay an

important role in the atmosphericphotochemicaland radiative processes.For example.

tile concentrationof troposphericozone,an important greenhousegas, is dependent

on transport acrosstropopauseand by chemicalproduction and destruction involving

reactionsof .\ro_, non-methanehydrocarbons,carbon monoxide,and hydrogenoxides

(HO_). Furthermore, the radiative balanceof the atmospherecan be affected by

the accumulation of carbon dioxide and water and by the aircraft-induced changes

in aerosolsand clouds. In addition, tile conlbustion aerosols(soot) and tile binary

t[25'04/[I20 droplets in the plume call be efficient cloud condensation nuc{ei and serve

as sites for heterogeneous reactions.

A variety of models have been developed to assess the effect of aircraft flights on the

atlnosphere. These models generally fall into two categories: "'snlall-scale'" and "'global"

models. "'Small-scale" models treat the near-field regime of the exhaust wake by ignoring

processes that operate on larger time and space scales. Global models [Sich uma,_n. 19!)6].

on the other hand, attempt to represent the large spatial scales an([ ignore, or t'el)resent

very crudely, the small scales processes. To obtain some sort of continuity, some of

tile global models [Schumann, 1996} use the engine exhaust conditions or tile data at

the end of tile plume-vortex regime as input to their large-scale models. However. as

shown recently [Brown et al., 1996; ll"an9 and Chen, 1997; Jlenon and ll'u. 199S]. the

concentration of species (e.g., chemical radicals OH, H02 and soot) can undergo very

rapid changes in the near-field. This can significantly modify the input conditions for

the far field simulations. Thus, to obtain accurate prediction of the global chemical

balance due to aircraft emission, the chemical processes in the plume-vortex regime are

very important.

The hydrodynamics of the plume-vortex regime is also quite complex. For examl)le.

the competition between the vortex centripetal force and gravitation buoyancy of



hot plume can lead to a different final altitude of depositionof emissions[.lliak_-L!je

et al., 199:3]. This implies that evolution of the plume occurs in a highly unsteady

manner. However, many of tile models [Brown et al., 1996:IVa,_9 and Che,_, 1.q97] are

steady-state models and therefore, are unable to account for the unsteady mixing effects.

To study unsteady jet-vortex interactions, unsteady methods have also been used.

For example, direct numerical simulation [Risso et al., 1996] and large eddy simulation

(LES) of trailing vortices [Ragab and Sreedhar, 1994a] showed that there exists strong

3-D instability in vortex wakes with an axial deficit. Tile vortex instability results in

vortex-stretching which may have a substantial effect on the mixing of jet phune with

the ambient air. Gerz and Eh,'et [1996] used LES to simulate the vortex roll-up process

of the wake of a B-747 one second after exit. They showed that temperature, relative

humidity peak at the center of the wingtip vortex: the wing boundary laver turb,tlence

and tile ambient turbulence all can affect the plume-vortex interaction process.

['nsteadv simulations are computationally expensive and therefore, most past

studies employed some simplifying assumptions. For example, only limited chemical

effects have been investigated so far [Tesl,'e et al., 1997] and all simulations reported so

far employed periodic boundary conditions in the streamwise directions (i.e. simulated

temporal evolution instead of the actual spatial evolution). Temporal al)proximation

is truly justified only far downstream where the interaction between the jet plume and

wingtip vortex has been completed [Lewellen et al., 1998]. It has not yet been shown

what features of the flow and the accompanying chemical processes are different and/or

modified by this temporal assumption in the near field. This issue is important since

it has been shown that the entrainment predicted by temporal and spatial simulations

(lifter markedly due to the asymmetry between the high speed and the low speed sides

of the shear layer [Dimotakis, 1986]. This asymmetry cannot be captured i12 a _empova]

simulation. The impact of this asymmetric entrainment on the chemical processes ill

the phune-vortex interaction regime has not been addressed so far.



This paper will addressmany of these issuesand will attempt to quantify tile

impact of simulation methodology(i.e., spatial or temporal) on the prediction of the

speciesdistribution. Fnrthermore, the effectof the fluid dynamic interaction processon

the chemicalkinetics and on the concentrationof speciessuchas NO, S03 and 0:3 ill

the plume-vortex regime will be addressed in the presence of both gas and heterogeneous

kinetics.

2. Simulation Model

The formulation of the simulation model is briefly summarized below..More details

are given elsewhere [Menon et al., 1996; Kim a,d 3lenon, 1995: .\'dson and .1I(,o,.

199S] and. therefore, avoided here for brevity.

The fluid dynamic LES equations are obtained by spatially filtering the compressible

Navier Stokes equations. The resulting equations contain unknown subgrid terms such

_g_ = p[u-_j hi@]. the ellthalpv flux andas the stress in the momentum equations, rij -- .

the viscous terms in the energy equation. H, _g* = ,5[Ht-_ -/:/(_i]. o',*_' = [_r;., - b,7_,,]:

and the scalar correlations, _'_g" = T}'_. -Tt'_. in the equation of state. Here. tilde

and bar indicate filtered variables, hi, p, rij and /2I are. respectively, the resolved

velocity components, the density, the viscous stresses and the total enthalpy per unit

volume. To close these subgrid terms, a model equation for the subgrid kinetic energy

_. s9 s = tahiti -- (t i [l i "

O-----i--+ (Pi_lc_g')

is also solved along with the LES equations.

0 0,' ]sgs

O.ri (P_'t--g_/ )

-,-,;'OaJO.r_

-c,p(k _)a/_/_x (1)

Here, vt = c,,_._k is the subgrid eddy

viscosity and .X is the grid size. The coefficients c,, and c¢ are computed locally (in space

and time) during the simulation. With k _J' known, the subgrid terms are approxilnated
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as rij _ --2pvt(bii + 5p^ eij, --i = ---_vt_..-X Prt and _7i = _ljri. / .

Here. ]ar t _ 1 is the turbulent Prandtl number and _¢ij is the resolved rate-of-strain

tensor, _,j_ = _(0xjl_ + a_O_).0_:.All third-order subgrid correlations are neglected in this

closure for simplicity.

Closure of the species equation requires closure of the subgrid species transport

term p}_.ui - _,.d 5. A subgrid diffusivity model (as the eddy viscosity model given

above) is not considered an excellent choice since for combustion to occur, species must

first mix at the small scales and then molecularly diffuse. These processes occur at tile

unresolved scales and therefore, a global eddy diffusivity model for the subgrid species

flux that ignores the subgrid processes, requires some justifications and can 1)e used onl.v

under certain conditions. In the present study, the mixing process is dolnhlated by the

large-scale transport of the phlme species into the wing-tip vortices. Furthermore. the

time-scales for the subsequent chemical reactions are quite large (i.e., slow chemistry).

Thus. the fast time small-scale mixing effects can be considered completed before tile

chemical reactions occur. For these reasons, an eddy diffusivitv model for the species

subgrid flux is considered a reasonable first-order appro',:imation. With these cotntnents

in mind. the subgrid species flux is approximated as:

pt_.uj - -_fkdj -fivt 01"},.=- -, r (2)

where Sc r is the turbulent Schmidt number set to unity for the present study.

3. Nunlerical Method

An explicit finite-volume scheme that is fourth order accurate in space and second

order accurate in time was used in the present study. The details of the numerical scheme

has been reported elsewhere [Nelson, 1997; ,\relsor_ and 3lenon, 1998] and therefore.

avoided here for brevity. The current approach is similar to the implementation

described by Garnet and E.sticalezes [1995] except that the fluxes are modified so that a
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truly fourth-order accuracy ill space is obtained at least on an uniform grid.

The present code has been parallelized using tile standard Message Passing Interface

(MPI) library. The computational domain is decomposed into subdomains and assigned

to different processors which have an identical copy of the numerical algorithm. For tile

current scheme, a five point stencil is used and therefore, two rows of variables must be

exchanged in either direction. Timings analysis of this code on various parallel machines

(e.g., Cray T3E, SGI Origin 2000) show that the code achieves nearly linear sl)eedu p as

the number of processors is doubled. However, depending upon the total number of grid

points employed there is an optimum number of processors beyond which the message

passing overhead overtakes the computing time in each processor's domain.

For a 121 × 97 × 97 computational grid a typical simulation (using 15 reactive

species) on the Cray TaE takes around 5000 single processor hours to obtain data

sufficient for statistical analysis (.5 flow through time). The CPU time per time step per

grid point was around 3E-6 sec on 128 processor T3E (or 3.6 sec per time step).

Two types of problems are studied in the present study. Figures la and lb show.

respectively, the plume-vortex domain behind a Boeing 737 and a Boeing 7t7 aircraft.

The primary differences are in the span, the number of engine plunms and the exhaust

conditions. These two configurations were chosen primarily because there is some data

available for comparison.

For slip or symmetry conditions, values are prescribed for ghost-cells such that

gradients normal to the face at the bounding face are zero. Periodic boundary conditions

are prescribed in the streamwise direction for the temporal simulations.

For the spatial cases, the inflow and outflow boundaries are more complicated

and must be carefully implemented. We employ a method that attempts to provide

reasonably accurate inflow turbulence statistics [Nelson, 1997: Poinsot al_d Lel_, 1992].

The inflow is critical for the spatial case since it determines the turbulence entering

the computational domain. A turbulent inflow field is generated based on a prescribed

Figure 1.



energy spectrum and turbulence intensity and then superimposed on the nlean field.

Tile turbulence spectrum chosen is of the form E(/,') = Ck4e.rp(-2(k/kp) _) used by L_e

el al. [1991], where constant C is chosen as turbulence intensity level. Tile turbulence is

divergence fi'ee and non-periodic in time. The field is stored as .'3D array from which a

2-D plane is introduced at the inflow at every time step. At least 10 different arrays of

97 × 97 x 97 are stored and to ensure that the inflow field is not correlated, at randomly

chosen instants, the phase in the Fourier modes is randomized.

Tile outflow boundary is non-reflecting characteristic boundary conditions [Poi,._ot

a,d L_le, 1992]. The amplitudes of the outgoing waves are computed from tile

interior points and the amplitude of the incoming wave is computed by specifying the

background pressure. Details of this type of outflow condition are given in [Pom.,ot a_d

Lele. 1992].

The wing-tip vortex is modeled by the Lamb-Oseen vortex [,5'affman. 1973] with

an axial velocity deficit. This model has been extensively used [Ragab at, d .5r_dhar.

1994a. b: Quackenbush et al., 1993. 1996; Risso et al.. 1996: Garnier et al.. 19!)6] for

earlier studies. The location, core radius, maximunl circulation data of tile wing-tip

vortex and the engine location and exit conditions (Table 1 and 2 summarize these

conditions) are chosen according to the aircraft configurations.

The gas phase chemical kinetics studied in tile present l)aper are identical to the

chemical mechanism in [Brown et al., 1996] except that in the present case. we employ a

reduced reaction mechanism that shows an excellent agreement with the full mechanism

[lIang and Chen, 1997; Menon and ll/'u, 1998]. A total of 1.5 species were simulated in

the present study. The heterogeneous kinetics studied are very simplistic and consist of

condensation of nitric and sulfuric acid on the soot particles. The details of this nlo(lel

are given in [ll'ang and Chen. 1997: Menon and IVu, 1998] and avoided here for brevity.

Table 1.1

[Table 2. i
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4. Results and Discussion

In this section, we summarize the results obtained in the present study. There

are three primary objectives of this study. First, comparison with available data is

carried out to demonstrate the ability of the simulation model to accurately capture the

evolution of the plume-vortex regime. Second, the results obtained using temporal and

spatial methods are compared to identify what features are not predicted accurately

nsing t eml)oral simulations (as noted earlier, nearly all previously reported 3D studies

employed periodic conditions in the streamwise direction). The final objective is

to determine the impact of turbulence transport on the formation of SOw. and the

(lest ruction of ozone.

Before discussing tile details of the plume-vortex interaction, the effect of different

inflow turbulence on the flow field is briefly summarized. Figure 2 shows the effect of

inflow turbulence on the scalar (here S02 concentration is used as a scalar marker)

decay with increasing plume age in a B747 phune-vortex region. Three different inflow

turbulence conditions are used. Two conditions employed the same energy sl)eclruln

but with a 5c7_ and 10% turbulent intensity, respectively, while the third case used the

same initial isotropic spectrum as the other two but was introduced into the flow field

after evolving for a certain length of time with a final turbulent intensity of .5_7_. Thus.

in the third case. the inflow evolved to a more realistic turbulent isotropic state whereas

in the frst two cases, the field is isotropic but is not realistic turbulence.

It can be seen that the cases with the same turbulent intensity yield ahnost identical

results. This means that the effect of evolving of the inflow turbulent field is small, at

least for the global measure used here. (Note that such global measures are of interest

here). However, it can be seen that turbulent intensity does have an effect on tile flow

field. This implies that the inflow turbulent intensity must be carefully chosen. The

turbulence intensity in the vortex and jet plume varies with flight conditions such as

climate, altitude and ambient flow field. A turbulent intensity between 5{7_ and 10_/, is

igure 2.
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very common in tile typical flight path of interest [Ragab and Sreedhar, 199413]. Thus.

simulations with 5% and 10% inflow turbulence may be used to quanti_, an upper and

lower bound for the species distributions in actual flights.

Interestingly, the descending vortex velocity computed from these three cases

showed similar results. However, this is understandable because the descending vortex

velocity is mainly determined by the overall vortex circulation and small scale turbulence

exerts negligible effects on the circulation. The numerical simulation of q-vortex by

Ragab and Sreedhar [1994b] also demonstrated this feature.

4.1. The Boeing 737 wake

Figure :3 shows some typical comparison of the wake LIDAR data [Pool_ el al..

1996] with tile present calculations. These simulations were performed using 61xl01xl01

grid points and using tile temporal method. The initial conditions and computation

domain was chosen to match the data for B737. For comparison, identical location

(i.e., plume age), domain size and contour distribution is used in these figures. The

chosen location is approximately lkm downstream of the engine exhaust (at a plume

age of 5 seconds). Note that the numerical study enforced symmetry along tile aircraft

center-plane primarily to reduce the computational cost (see Figure la). As a result.

the numerical result shows a symmetric image (obtained by mirror imaging the data)

whereas the experimental data shows some asymmetry. In spite of this difference there

is quite a bit of similarity in the predicted and the measured vortex structure. These

features are discussed below.

First, the scale (size) and the location of the computed structure is in good

agreement with data. The separation distance between the vortex pair is also predicted

quite accurately even with symmetry boundary condition. Second, tile structure of

the vortex with its trailing tail (which is the jet plume as it gets entrained) is quite

similar. In both the experimental data and in the present simulation, the concentration

Figure 3.
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variation in tile core of the vortex is very small. However, there is relatively a large

variation in the outer region of tile vortex. This implies that the core of tile vortex

has a stabilizing effect and inhibits the dilution of the passive tracer. The turbulent

small-scale structures seen in the experiments are qualitatively captured by the LES. Oil

the other hand, the earlier comparison reported using the UNIWAKE method [Te.sl,'e

et al., 1997] did not yield this type of detail on the vortex structure and showed a scalar

field that was more concentrated and coherent than the experimental data since the

small scale mixing effects were neglected. The more reasonable agreement between the

present LES and the data suggest a potential advantage of carrying out full :_D LES.

\Ve expect to carry out additional comparison with the LIDAR data when it

becomes available in the near future.

4.2. The Boeing 747 wake

The LES model was used extensively to studv the B747 wake. The key differences

between the B737 and B747 are in the appropriate scales, flight conditions and the

presence of two engine plumes for the B747. These simulations were carried out using

both temporal and spatial methods to facilitate direct comparison. The temporal

simulation captures a region of plume-vortex evolving in time which corresponds

spatially (via a velocity transformation) to a location that moves (with increasing time

in the downstream direction. A grid resolution of 121 x 97 x 97 is used for both spatial

and temporal simulations. For some simulations (of an extended domain) a resolution of

201 x 111 x 111 was employed. The calculation begins from 6s and domain size of 2I_

in the streamwise direction was simulated. In the other two directions, the domain size

is 2..5s. Here, s is the aircraft's semispan. Only one-half of the wake regime is simulated

by employing the symmetry boundary conditions at the wake center plane.

4.2.1, Plume evolution Figure 4 shows a comparison between present spatial

and temporal simulations of the passive tracer concentration on a cross-section of the
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phune/wake at a distanceof 30 senti-spansdownstreamof the aircraft. The phuneage

is about 5 seconds.As seenearlier in Figure 3 (for the B737). large-scale structures

are seen in the present LES. The wing-tip vortex and the tail of the jet phunes can

be clearly" seen in the present computation. Again, the concentration variation in the

core of the vortex is very small even for the twin plume interaction for the B747. More

turbulent small-scale structures are seen for the B747 due to tile interaction between

twin phunes with the vortex.

A key' difference is seen between the temporal and spatial data in the structure

of the plumes as it gets entrained into the vortex. It appears that a large portion of

the inboard plume is still very distinctly separated from the vortex for the spatial case.

whereas in the temporal case the inboard plume is also getting entrained into the vortex.

The implication of this difference is discussed in the next section.

The descending vortex velocity is relatively steady within the computational range.

The computed descending vortex velocity for spatial sinmlation and temporal simulation

are 0.90 m/s and 0.86 m/s, respectively. From the data. by Test,'e el al. [1.997]. the

descending vortex velocity is around 0.93 m/s between about 1.5 and 4:0 semi-spans

which is in agreement with present simulations.

Figure 5 shows the comparison of the averaged ,-gO2 scalar concentration decay

with increasing l)lume age (These simulations were carried out for large domain using

201 ×lll ×lll grid). Here, S02 is a marker species present initially only in the plume

and therefore, represents the transport and entrainment of the plume into the vortex.

The averaged concentration is defined as the volume average of the cells which has at

least one percent of the local maximum concentration. This definition was also used

by Te.slce el al. [1997]. This was required since the present simulation begins with a

different initial scalar concentration when compared with Tesl_'e et al./1997). Since the

inflow in Teske el al. [1997] and the present LES are not similar, the Ctl, rrent result has

been normalized by the SO2 concentration value in Te.ske et al. [1997] at plume age 1

Figure 4.
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second in order to compare the dilution process between the two models.

The decrease in S02 concentration is mainly due to mixing with ambient air

because tlle reaction rate for S02 destruction is small. The current spatial and temporal

simulations are in good agreement, but there is a discrepancy between present study

and the result obtained using UNIWAKE [Teske et al., 1997]. The current results

show a much larger initial decay rate than the UNIWAKE result. The experimental

measurements bv Arnold et al. [1997] also showed a lower value of S02 at a distance of

2kin downstream of the plane than the prediction by Teske et al. [1997]. The current

predictions in this region show a better agreement with data. As Te.sk_ et cal. [1.q97]

noted, the limitation of the turbulence model used in UNIWAKE may be contributing

to this discrepancy. In the present LES with the dynamic sub-grid model the turbulent

viscosity is dynamicly computed and adjusted to varying strain rate of the mean flow

(i.e.. different age of the plume). Thus, better comparison with the experimental data

is expected and can be observed in this figure. It can also be argued that the more

accurate resolution of the turbulent small-scale structures in the LES improves the

prediction since turbulent diffusion plays a large role in scalar mixing. In contrast.

15NIWAKE predictions ignore the small scale mixing effects. This may contribute to

the under-prediction of average scalar concentration decay.

4.2.2. Detrainment of the exhaust plume Figures 6a and 6b show.

respectively, two instantaneous vorticity magnitude contour plot.s in the x-z plane at

v=0 from the spatial simulation. The two jet plumes develop almost independently

in the first 4 semi-spans. After 4 semi-spans, the outboard jet plume starts to get

entrained into the wing-tip vortex, and the jet plume is deflected towards the wing-tip

vortex. Further downstream, the two jet plumes break up into smaller structures. This

is characterized by patches of concentrated vorticity which are surrounded by flow with

much lower vorticity.

The high level of intermittency seen in the flow field makes Reynolds averaged

Figure 5. !

Figure 6.



15

approach inapplicable since it cannot capture this effect. It can be seen that tile broken

portions of tile outboard jet plmne are deflected and entrained into the wing-tip vortex.

Oil the contrary, due to the strong turbulent motion and relatively weak influence of

the wing-tip vortex, a portion of the inboard jet plume gets delrai_ed from the wing-tip

vortex. Observation of contrails from widebody planes such as the B747, show that

there are two contrails behind the aircraft; one that is the normal vortex core contrail

and another that is distinctly separated from it. As Gel': and Ehret [1996] pointed

out, irregular roll-up of the wing-tip vortex, turbulent motion and buoyancy maF result

in detrainment. C,er: and Ehrd [1996] failed to capture detrainment in the near field

by including buoyancy effect (Note that, buoyancy is also included here). Also. the

detrainment captured bv _lackenbush et al. [1996] was only in the far field. Present

simulation suggests another reason for detrainment. This is the effect of turbulent

mixing which breaks up the inboard jet plume before it gets entrained into the vortex.

This, in turn. forms the detrained contrail as seen in Figures 6a-b.

Figures 7a and 7b show, respectively, two instantaneous cross-section flow fields

of the vorticity magnitude contour plots at the downstream location 12_ and 24.: (.__is

the semi-span) from the temporal simulation. The downstream distance ['or temporal

simulation is estimated from the temporal time by using the Tavlor's hypothesis.

Figures Sa and 8b show the corresponding vorticity contours from the spatial case.

There is great variety in the instantaneous data but these figures are very representative.

At 6s, the two jet plumes become turbulent and the interaction between the outboard

jet plume and the wing-tip vortex starts (not shown). At 12s, the two jet plumes begin

to interact with each other and then merge. However, some part of the outboard jet

plume gets entrained into the wing-tip vortex. For the spatial case, at 18_ (not shown).

a portion of the outboard jet plume is entrained into the wing-tip vortex while a major

portion of the inboard jet plume stays separated.

The detrainment of the inboard plume continues as shown at x=24s and is more

IFigure 7.
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apparent in the spatial case than in the temporal case. Although there exist highly

turbulent structures around the wing-tip vortex, the core of the wing-tip vortex remains

coherent and laminar. This overall observation of the plume dispersion is quite similar

to the results obtained by Sykes and Henn [1992] and Sykes et al. [1992], except for the

addition of the wing-tip vortex in the present study.

Comparison of the temporal (Figs. 7) and the spatial (Figs. 8) cases show some

significant differences even through the overall entrainment process is qualitatively

similar. For example, the detrained plume for the spatial case is also much more

coherent than in the temporal case (also shown in Fig. 4). The inability of the telnporal

simulation to clearly capture the detrainment process is due to the fact that detrainment

occurs right behind the aircraft where the periodic assumption is not satisfied. This

observation suggests that to capture detrainment of the plume, spatial simulations may

be more appropriate.

4.2.3. Spatial versus temporal entrainment effects Some differences

between temporal and gpatial simulations have been noted above. Namely. the spatial

simulation is able to capture detrainment effects while the temporal case could not. This

was attributed to the fact that in the early stages of plume-vortex interaction periodic

assumption in the streamwise direction may not be appropriate. Here, additional

entrainment quantities are computed and compared to quantify the impact of simulation

methodology.

Figure 9 shows the detrainment ratio from the vortex core. The detrainment ratio

is defined as the percentage of representative species NO outside the wing-tip vortex

core which has a radius of about 4m. The vortex center is located bv finding the point

where the minimum axial vorticity occurs. Initially, the detrainment ratio is 1.0. The

spatial and temporal simulations show similar trends, however, the spatial simulation

data has some variations which may be attributed to the random wandering of the

wing-tip vortex. This wandering has been observed in experiments by Deeet_port _t (d.

Figure 8.
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[1996]. Thus, it would appear that spatial simulation is able to qualitatively capture

this random wandering effect.

As the plume begins to get entrained into the vortex core, the detrainment ratio

decreases. This decrease is large in the first 12_ and then begins to level off. This

indicates that part of the plume has overcome the attraction of the wing-tip vortex after

12s. This was also seen in Figures 6a and 6b where there is an apparent separation of jet

phunes after 12s. The detraimnent ratio reaches a final value of around 0.87. Therefore,

about 13 percent of jet plume is entrained into the core of tile wing-tip vortex.

In the vortex core, the temperature is about 8 degree higher than the ambient

tenlperature. Note that without entrainment of the hot jet phunes, the temperature

inside the wing-tip core should be a few degrees lower than the ambient temperature

due to the lower pressure inside the vortex core. However, due to entrainment, the

teml_erature in the vortex core is increased. The several degrees" increase of temperature

is critical when chemical reactions are included. This difference in temperature indicates

that the entrained phune undergoes a different chemical reaction path, e.g.. via the

heterogeneous reactions (if included) when compared to the portion that is detrained

from the vortex. The previous studies [Quacl,'enbush et al., 1996: Teske et al., 1997]

showed only a fully entrained plume without any details of the structure inside tile

vortex.

It is interesting to track the different dilution processes of plume species inside and

outside the vortex core since there is a lower pressure zone inside the vortex core and

the flow field is more stable inside the vortex core. It is well known that the conditions

for contrail formation are very subtle and a little difference in the thermodynamics

and fluid dynamics can result in widely different contrail formation. Figure 10 shows

the maximum NO mass fraction inside and outside the vortex core versus downstream

distance. Both spatial and temporal results are compared. Inside the vortex core. the

maximum NO mass fraction is almost constant after it reaches the maximum. However,

Figure 9.
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outside the vortex core the maximum NO mass fraction drops very fast in the first 12s.

The reason is that turbulent diffusion is very large outside the vortex core due to tile

enhanced mixing by the strong turbulence near jet plume breakdown. On the other

hand. the vortex core is relatively stable due to the swirling effect of the wing-tip vortex.

After 18s. when the turbulence begins to die down due to viscous dissipation, the NO

concentration begins to level off. Comparisons of the spatial and temporal results show

that on the outside maximum NO mass fraction agrees very well. However, inside tile

vortex core, the temporal simulation shows a higher peak than the spatial simulation

(by around 25_7_).

Figure 11 shows the axial variation of NO and 5'Oa mass fractions at vortex center.

Although the spatial and the temporal simulations show similar trend, the spatial

simulation shows a nmch higher mass fraction than the temporal simulation. From

Figures 10 and 11, one can conclude that the species distribution inside the vortex core

predicted bv the temporal simulation is more spread out around the core center than the

prediction by the spatial sinmlation. This implies that the reaction rate in the temporal

simulation is slower than that in the spatial simulation.

In both the spatial and the temporal sinmlations, SOa mass fraction first increases

and then peaks near 10s. However, there are significant difference in the magnitude of

peak SOa. The spatial data shows a peak twice as nmch as the temporal data. The

wide discrepancy between temporal and spatial results has important inlplications for

heterogeneous reactions and for H2S04 aerosol formulation. This is briefly discussed

below.

Note that SOa is produced by the oxidization of S02 and then primarily removed

by heterogeneous reaction on condensed soot particles. As a result, there is an ,5'Oa

mass fi'action peak at around 10s. Since the heterogeneous reaction rate is lnainly

related to the thermodynamic condition at the core and almost the same for both

spatial and temporal simulations, the peak of the 5'Oa mass fraction is determined bv

Figure 10
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tile rate of S02 oxidization reaction which is strongly affected by S02 mass fraction. ,\s

Figure 10 and 11 suggest, the spatial data has a higher species concentration around

the vortex center and thus, a higher production rate of S03 than the temporal data.

These differences between the spatial and temporal simulations imply a necessity for

spatial sinmlation in the near field regime.

The implication of the higher concentration of SO3 (in the spatial LES) is that

it could result in an increase in the H2SO4 aerosol formation. Although this feature

has not been included here, the spatial LES prediction appears to partly explain the

discrepancy between experimental data and earlier numerical studies. As noted earlier

[Fabell et al., 199,5], data suggests a 4.5 times higher H2S04 aerosols concentration in the

vortex-plume than the earlier calculations [Brown et al., 1996]. The present prediction

of higher S03 concentration in a spatial LES (in contrast to temporal or parabolic space

marching) seems to suggest that this discrepancy may be partly due to the numerical

approach. However, to confirm this we need to carry out these sinmlations, including

H,2S04 binary nucleation and coagulation aerosol models. This effort is underway and

will be reported in the near future.

Some integrated quantities are also analyzed. The mass of entrained ,VO and 5'03,

into the wing-tip vortex are shown in Figure 12. Temporal simulation shows that a

larger amount of NO and SO3 is entrained than the spatial simulation does. Since the

relative reaction rate for NO is small, NO entrainment can be used to represent the

entrainment process. The difference between the spatial and the temporal simulations

may be due to the axial velocity deficit of the jet plume. The deviation between the

two types of simulations begins around z = 12s, where most of outboard engine plume

is entrained into the wing-tip vortex and the inboard engine plume splits into two

parts. One part eventually gets entrained into the wing-tip vortex while the second part

becomes detrained from the wing-tip vortex. The chemical processes that result due to

the ,\'O concentration will be different in these two regions. IFigure 12
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Tile mass entraiument of S03 into the wing-tip vortex shows a higher peak for tile

spatial case. Tile discrepancy in the SOa concentration in the vortex is particularly

bothersome as noted earlier. The increased number of aerosol measured in tile wake

[Faheg et al., 1995] and the potential increase in the condensed sulfuric acid (due to

the reaction between S03 and condensed water) forming on these particles have been

identified as one process that could impact long term global atmosphere chemical

balance. Tile high peak for the spatial case again suggests that simulation boundary

conditions can affect the predictions especially in the near-field plume.

In order to study tile effect of heterogeneous reactions of H:VO3 and H2.qO4 oil

plunm evolution, temporal and spatial simulations without heterogeneous reactions were

also carried out. Since the heterogeneous reactions have negligible effect on .\O and

502 concentrations, only S03 data is analyzed. Figure 13 shows the comparison of .c,'0:3

mass fraction at vortex core and entrainment into the vortex core between spatial and

temporal simulations. Both simulations show much higher _c,'03 concentration than the

simulations with heterogeneous reactions. Also, the concentration keeps increasing in

the downstream direction. The reason is that without heterogeneous reactions ( which

converts SO3 into H2S04), SO3 concentration keeps increasing due to the production

through S02 oxidization mechanism. Both simulations also show a much higher .qOa

entrainment than the simulation with heterogeneous reactions. This is as expected.

The spatial and temporal results differ much more without heterogeneous kinetics. This

implies that the spatial simulation yields a higher removal rate of gas phase .SO3 inside

the wing-tip vortex when heterogeneous reactions are included. Furthermore, tile result

suggests that more condensed H2S04 is formed in the spatial case than the temporal

simulation.

Figure 13
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5. Conclusions

In this study, fluid mixing and chemical reactions in the near-field wake of B737

and B747 aircrafts have been investigated. The plume-vortex regime is studied using

a 3D parallel LES code. Simulations of engine plume interaction with the wing-tiI)

vortex of the B737 and B747 have been carried out and comparisons with available

data have been used to demonstrate the ability of the LES method. Detailed gas phase

kinetics and simple heterogeneous processes have been included to evaluate the effect

of turbulent mixing oil the chemical processes in the plume-vortex regime. Finalh. to

determine tile impact of teml)oral assumptions (often used in such flow simulations)

comparisons with spatial simulations were carried out.

._[any features of the computed flow field show reasonable agreement with

experimental data. The plume-vortex simulation for the B737 shows qualitative

agreement with LIDAR data and the variation of average SO2 concentration with

axial distance for the B747 shows reasonable quantitative agreement with availal)le

data. The entrainment and detrainment of engine plumes into the wing-til) vortex were

numerically captured in the spatial simulation (for the 13747) and analyzed. The impact

of fluid mechanics on the chemical process has been estimated. Results indicate that

a significant difference between spatial and temporal simulation exists (especially iz_

the predicted SO3 concentration). This difference has an important implication for the

prediction of sulfuric acid aerosols in the wake and may partly explain the discrepancy

between past numerical studies and the data. Analysis of the results also shows that

spatial simulation is more suitable for the near field interaction process. For example,

it was determined that detrainment (observed in the B747 contrail) was only captured

using the spatial model.
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Figure Captions

Figure 1. Setup of the numerical simulations for the spatial LES sinmlations.

Figure 2. Comparison of averaged S02 mole fraction decay for different turbulence

inflow conditions.

Figure 3. Comparison of B737 scalar concentration with LIDAR measurement (data

from Poole el al. [1996]).

Figure 4. Comparison of scalar concentration predicted by spatial and temporal simu-

lations at a plume age of 5 seconds (30 semispans).

Figure 5. Comparison of averaged S02 mole fraction decay with experimental data.

Figure 6. Instantaneous vorticity magnitude contours at different times for the spatial

LES of the B747 wake. The contour interval is 2 sec -1.

Figure 7. Vorticity magnitude contours at different locations in the temporal simulation.

The contour interval is 2 scc -1.

Figure 8. Vorticity magnitude contours at different locations in the spatial simulation.

The contour interval is 2 se:c -t.



Figure 9. Variation of the detrainment ratio of .VO specieswith the downstreamdis-

tance for B747.

Figure 10. Maximum NO mass fraction inside and outside the vortex core (vortex core

has a radius of 4m).

Figure 11..VO and S03 mass fraction at the vortex core center.

Figure 12..VO and S03 mass entrainment into the vortex core.

Figure 13. SOa mass fraction at the vortex center and entrainment into the vortex core

with only gas phase chemistry.



Tables

Table 1. Data for B737 and B747.

type wing maximum vortex vortex

span circulation core radius separation

B737 30m 100m2/s 2m 26m

B747 60m 600m2/s 4m 54m

28



Table 2. Initial conditions for the plume-vortex

calculations of B747.

B747

Plume Ambient condition

Temperature 500K 217K

velocity(m/sec) 247 0.0

pressure(atm) 0.17 0.17

mole fraction

CO 2.4x10 -5 2.0x10 -s

C02 3.2x10 -2 3.5x10 -4

H2 1.0xl0 -6 5.2x10 -r

02 0.159 0.2098

OH 1.0xl0 -s 2.8x10 -13

H20 3.0x10 -2 4.8x10 -6

);2 0.779 0.789

NO 4.3x10 -s 5.9x10 -ll

-VO2 4.8x10 -6 4.3x10 -l°

-V20s 0.0 0.0

H,\rO3 0.0 3.3X10 -9

HONO 0.0 0.0

S02 6.9x10 -6 0.0

S03 0.0 0.0

03 0.0 2.5x10 -r

2.9
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Numerical Modeling of Chemistry, Turbulent

Mixing and Aerosol Dynamics in Near-Field

Aircraft Plumes

Z. Wang and J.-Y. Chen

Department of Mechanical Engineering

University of California

Berkeley, CA 94720

A detailed mechanism including gas phase HOx, NOx, and SOx chemistry

between the aircraft exhaust and the ambient air in near-field aircraft plumes

is compiled. A reduced mechanism capturing the major chemical pathways

is developed. Predictions by the reduced mechanism are found to be in

good agreement with those by the detailed mechanism. With the reduced

chemistry, the computer CPU time is saved by a factor of more than 3.5 for

the near-field plume modeling. Distributions of major chemical species are

obtained and analyzed. The computed sensitivities of major species with

respect to reaction step are deduced for identification of the dominant gas

phase kinetic reaction pathways in the jet plume. The potential interaction

of subgrid turbulent mixing with chemistry is investigated and found to have



minor impact on the major speciesevolution.

A comprehensiveaerosolmodel is developedand it is coupledwith chem-

ical kinetics and the axisymmetricturbulent jet flow models. The integrated

model is usedto simulatemicrophysicalprocessesin the near-fieldjet plume,

including sulfuric acid and water binary homogeneousnucleation, coagula-

tion, non-equilibrium heteromolecularcondensation,and sulfur-inducedsoot

activation.

The formation andevolution of aerosolsarecomputedand analyzed.The

computedresults show that a large number of ultrafine (0.3-0.6 nm in ra-

dius) volatile H2SO4-H20embryos are generatedin the near-field plume.

Theseembryosfurther grow in sizeby self coagulationand condensation.

Soot particles can be activated by both heterogeneousnucleationand scav-

engingof H2SO4-H20aerosols.Theseactivated soot particles can serveas

water condensationnuclei for contrail formation. Conditions under which

ice contrails can form behind aircrafts are studied. The sensitivities of the

threshold temperature for contrail formation with respect to aircraft propul-

sion efficiency, relative humidity, and ambient pressure are evaluated. The

computed aerosol properties for different extent of fuel sulfur conversion to

S(VI) (SO3 and H_SO4) in engine are examined and the results are found to

be sensitive to this conversion fraction.
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Chapter 1

Introduction and Literature

Review

Research on the impact of aircraft emission on the atmosphere was initiated due to

interest in commercial supersonic fleet for trans-Atlantic and Pacific rim [Stolarski and

Wesoky, 1995; WMO, 1995]. Research effort was later extended to subsonic aircraft

emission impact due to their annual growth rate of 5-7% and environmental concern

by communities [Schumann, 1995a; Friedl, 1997]. Aircraft emissions in heavily tra-

versed air corridors may have major atmospheric perturbation. Main concern is the

effect on 03 distribution and climate effects. Since there is considerable uncertainty

about aviation's impact on the atmosphere, NASA launched the Atmospheric Effects

of Aviation Project (AEAP), which includes elements of Subsonic Assessment (SASS)

and Atmospheric Effects of Supersonic Aviation (AESA). The goal of NASA's SASS



project is to developscientificbasisfor assessmentof atmosphericeffectscausedby

engineexhaust emissions,to assistinternational ozoneand climate assessment.The

assessmentsserveas necessaryrecommendationsfor regulatory agencies,i.e., EPA

and FAA, as a basisfor possibleemissionstandards, and as a guide for technology

development.

The emphasisin the assessmentsof the aviation impact has long beenput on the

emissionof nitrogen oxides(NOx) and their potential impact on ozone. Recentin-

situ emissionmeasurements[Faheyet al., 1995;Schumannet al., 1996;Petzold et al.,

1997]havedemonstratedthat a largeamount of volatile aerosolsand a small amount

of nonvolatileparticlesareproducedin nascentexhaustplumesof subsonicand super-

sonicaircrafts. Researchersare now especiallyconcernedabout the presently largely

unknown global chemicaleffectsof aircraft-producedparticles and soot [Weisensten

et al., 1996;Bekki, 1997]and how theseparticles could affect cirrus cloud formation

[Jensonand Toon, 1997]and thus radiative balance,which in turn could affect the

climate.

For simulation purpose,an aircraft wakeis divided into three parts: the near-field

jet plume regime, the vortex interaction regime, and the vortex break-up regime.

The relationship betweendifferent numerical models is displayed schematically in

Figure 1.1. Plumemodelsareusedfor tracking chemistryandmicrophysicalprocesses

in the near field, while global atmosphericmodels are intended for estimating the

potential effectsof aviationon the atmosphere.Resultsfrom the atmosphericmodels
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[Bekki and Pyle, 1992;Xue et al. 1994;Weisensteinet al., 1996]indicate potential

significantatmosphericeffectsdepending,to someextent,on the chemicalkinetics and

microphysicalprocessesin the exhaustplume. The two dimensionalglobal modeling

study of Weisensteinet al. [1996],for example,predicts a two-fold increasein the

stratospheric aerosol surfacearea (under non-volcanicambient conditions) due to

sulfuric acid nucleation in supersonicHigh SpeedCivil Transport (HSCT) plumes

if 10% of the emitted SOs is convertedto H2SO4shortly after emission. Near-field

plume studieswill similarly be important for subsonicassessments.

The present work is focusingon the simulation of near-field jet plume, which

extendsfrom the enginenozzleexit plane to the location wherethe plume begins to

interact with the vortex shed downstreamfrom the wing tip. Near-field modeling

results serveasan input to the later larger-scalemodeling. In the near field, major

chemicaloxidation of gasphaseHO::, SO::,NO::by hydroxyl radical OH takesplace,

and volatile sulfate aerosolsare generatedthrough binary homogeneousnucleation.

Chemicalactivation of soot into condensationnuclei (CN) alsooccursin this near-field

regime.

A study of near field jet plume with detailed chemical kinetics was previously

conductedby Miake-Lyeet a1.[1993].The flow field wasmodeledby the JANNAF

StandardPlumeFlowfieldmodel (SPF-II) [Dashet al., 1990]which isanaxisymmetric

parabolic Navier Stokesflow code with a two-equation turbulence model. K_ircher

et al. [1996a]further studied in detail the specific features that may result from
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Figure 1.1: Schematic of relationship among different numerical models in simulating

aircraft emission impact.

the coupling between chemistry and turbulent diffusion. More recently, Brown et al.

[1996a] and K_rcher [1996b] investigated the potential importance of microphysical

processes in the near field. The interaction of subgrid turbulent mixing with chemistry

was not included in any of the previous simulations. A trajectory model was used

to study aerosol dynamics by K_cher [1996b] and by Yu and Turco [1996, 1997].

Therefore, the flow field is not coupled to the chemistry and microphysical processes

and no radial resolution is offered. In addition, Yu and Turco's [1996, 1997] work did

not include chemical kinetics.

In the wake-vortex regime, the flow is highly three-dimensional. Large-eddy simu-

lation (LES) is believed necessary to accurately resolve the complicated fluid dynam-
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ics. However,LES is computationally expensiveand it is not feasible to incorporate

detailed chemistry. A reduced chemistry is therefore required to alleviate the compu-

tational burden.

The objectives of the present work are: 1) to compile a detailed chemical mecha-

nism for modeling reactions between engine exhaust and ambient air; 2) to develop a

reduced chemistry for LES in the wake-vortex regime; 3) to study chemical transfor-

mation in the near field and to predict distribution of key species; 4) to explore the

interaction between turbulence and chemistry using the probability density function

(pdf) approach; 5) to develop a comprehensive aerosol model for studying microphys-

ical processes of aerosols in the near field plume; 6) to investigate the sensitivity of

particle properties to less-known parameters; and 7) to study the threshold condition

for contrail formation behind aircrafts and to access its sensitivity. The present mod-

eling provides detailed predictions of gas phase species as well as aerosol particles,

which serve as an input for the follow-on model.
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Chapter 2

Model Formulation

2.1 Model Structure

Figure 2.1 shows schematically the chemical and microphysical transformation

processes of aerosols modeled in the present work. SOx and soot particles are emitted

from the nozzle exits of jet engines at high temperatures (500 K - 600 K). Sulfuric acid

H2SO4 is generated through gas phase chemical reactions of SOx with OH and H20.

Soot particles can be chemically activated by adsorption of SO3 and H2SO4, leading

to the formation of a partial or full liquid H2SO4-H20 coating. As the plume cools

by the entrainment of the cold ambient air, volatile liquid H2SO4-H20 aerosols are

formed through binary homogeneous nucleation. These volatile aerosols grow in size

through either condensation of gaseous H2SO4 and H20 or by self coagulation. The

volatile aerosols can interact with soot particles through coagulation, which provides
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Figure 2.1: Schematic of particle microphysical processes in near-field aircraft plumes

as simulated by the aerosol model.

another pathway for the sulfur induced soot activation. H2SO4 and H20 can condense

onto the coated part of soot particles.

2.2 Model Input

To initialize our numerical calculations and to convert emission indices of primary

exhaust products into mole fractions, we need engine exit-plane properties of aircrafts.



Table 2.1: Exit plane parameters for B747 engine

Exhaust Core Flow Bypass Air Flow Ambient

Fuel flow rate "hF, kg/s 0.795

Exit radius, m 0.44 0.435

Velocity, m/s 475.7 316.3

Temperature, K 547.3 253.4

Pressure, atm 0.2361 0.2361

237

219.2

0.2361

We will concentrate on the CF6-80 C2B1F engine used by the Boeing 747 aircrafts.

The formation and evolution of chemical species and particles are expected to develop

similarly behind other engines, with slight changes in the length scales due to different

nozzle geometry and axial exhaust velocity. The results of this work are considered

to be representative of other types of aircrafts qualitatively.

Recently, Schumann [1995b] has estimated the relevant nozzle exit plane parame-

ters for the B747 engine in such a way that they are consistent with the integral mass,

momentum, and energy balances of the jet core and bypass flows. Table 2.1 lists the

parameters adapted from Schumann [1995b] for a B747 at the cruising condition of

P_ = 0.2361 atm and T_ = 219.2 K with airspeed u_ = 237 m/s.

Given the emission indices EIk of the exhaust product k in gram per kilogram of

fuel burnt, the species volume mixing ratios (mole fractions) at the nozzle exit plane

can be derived from the following relation based on mass conservation

EIk ,hE 1
_. ----7.---. _

xk,0 =mk V Na' (2.1)

where mk is the molecular mass of species k, ,hE is the engine fuel flow rate, _" =
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Aco,.e,oUco,.e,o is the volumetric flow rate of the core flow at the exit plane. The subscript

0 denotes the engine exit plane, and Na = Pd(kBTco,.e,o) is the air number density at

engine exit plane. With the data in Table 2.1, we find for a B747,

Xk,o = 5.27 x 10 -4 •

where Mk is the molar mass of species k.

Elk [g/kg]

Mk [g/moll '
(2.2)

In Table 2.2, we present the initial mole fractions at the exhaust core based on

equation (2.2). The mole fractions in the ambient air are prescribed as the boundary

conditions in the numerical model. These ambient compositions are extracted from a

mesoscale chemical transport model based on the RADM mechanism [Chang et al.,

1987; Petry et al., 1994] and represent a region with dense air traffic, e.g., at northern

midlatitude (50°N) summer conditions at noon. The choice of the boundary values

is not crucial since we only focus on the short-term evolution of the near-field jet

regime. The ambient water mole fraction listed in Table 2.2 corresponds to a relative

humidity of RH xH2o aPa= ' _ 50%, where the subscript a denotes the ambient
P_,,H_o(T,)

condition and the superscript ¢x) denotes a flat surface.

The emission indices of water vapor and carbon dioxide can be estimated relatively

accurately assuming stoichiometric jet fuel combustion. Jet fuel sulfur contents (FSC)

typically vary from 0.1 to 1 g/kg [Busen and Schumann, 1995], with a broad average

around 0.4g/kg (400ppmm) and a maximum specification limit of 3 g/kg [American

Society for Testing and Materials (ASTM), 1994]. Assuming that fuel sulfur is totally

oxidized to sulfur dioxide during combustion in the engine, the SOs emission index
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Table 2.2: Initial and boundary conditions of gas species for B747

Exh_

O

02 0 1.1 × 10-14

03 0.135 0.21

H 0 3.0 × 10-r

H2 0 0

OH 0 9.0 × 10-z

HO2 6.2 > 10-6 2.8 × 10-13

0 3.6 x 10 -12
H20 3.6 x 10 -2
H202 8.8 x 10-5

NO 0 2.4 x 10-11

1.3 x 10 .4 8.1 x 10-n
NO2 6.9 x 10-6 10_11NO3 6.5 ×

N2Os 0 8.9 x lO-IS

HNO2 0 1.0 × 10-12

HNO3 0 3.4 × 10-13

CO 0 2.0 × 10-9

9.4 x 10-5 4.0 × lO-S
CO2 3.8 x 10 -2
SO 3.3 × 10-4

0 0

SO2 5.8 x 10-6 10_i 2SO3 9.1 x

0 0
HS03 0

H2SO4 0 0
0
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can be directly calculated with EIso2 = FSC. Mso=/Ms. In this work, we use

EIso2 = 0.Tg/kg. A sensitivity study with different levels of SO3 emission will be

presented in Chapter 4. The emission indices of the other two major air pollutants

resulting from combustion, CO and NOx (= NO + NO2), are also less well known

because they depend on several factors including combustion temperature, fuel-air

ratio, hydrocarbon oxidation process, and fuel nitrogen content. In the present work,

we employ EIco = 5g/kg and EINox equivalent to 12 g of NOx per kg fuel burnt.

NO_ emission is assumed to consist of 95% NO and 5% NO2 on a molar basis.

The hydroxyl radical OH is a key gaseous species driving major radical chemical

reactions in the cooling jet plume. Unfortunately its emission index is currently only

known with considerable uncertainties from simulations of the internal engine flow

and combustion [Miake-Lye et al., 1993; Stolarski and Wesoky, 1995]. K_ircher [1996]

showed that EIoH = 0.2 g/kg fuel, corresponding to 6.2 ppmv from equation (2.2),

can be used as a reasonable reference case. The abundances of all other radicals at

the exit plane are set to zero mainly because their emission indices are likely to be

insignificant or simply unknown.

Typical size distributions of nascent soot particles are assumed to be log-normal,

with mean radii in the range of 15-30 nm, modal widths of 1.4-1.6, and number

densities of 10_-10 _ cm -3 [Hagen et al., 1992; Petzold and Schroder, 1997]. In this

work, we take the median radius as 20nm, the modal width as 1.4, and the total
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numberdensity as 1.6x 106cm-3. Sincethe number density can be expressedas

EI, oodhF (2.3)
N_oot- Vm,oo, '

where the mass of a soot can be approximated as m,oot = p, oot" 4/3 rf3 with psoot _ 2

g/cm 3 for graphitic carbon. The soot emission index is estimated to be 0.04 g of soot

per kg of fuel. This corresponds to an emission index of El, oot/(psoot • 4/37r_3) =

0.6 x 1015 soot particles per kg of fuel.

2.3 Solution Method

To simulate the near-field jet plume, we assume the flow field is axisymmetric,

steady-state, and parabolic. Isobaric expansion at a prescribed ambient pressure Pa

is assumed. The turbulent mean velocity field is modeled by the Reynolds average

Navier Stokes equations with a second moment turbulence closure model, which di-

rectly solves the modeled transport equations for the Reynolds stresses. A marching

downstream algorithm is used and the details can be found in Chen et al. [1987,

1989]. When the turbulence interaction with chemistry in a subgrid is neglected, the

mean concentrations and temperature can be solved by the conservation equations

of mean species and energy. The mean chemical reaction rate can be expressed in

terms of mean temperature and mean concentrations _ = f(T, Ci). To account for

the subgrid interaction of turbulence with chemistry, an additional term of subgrid

molecular mixing is needed, and the mean chemical reaction rate cannot be expressed
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in generalas a function of meantemperature and mean speciesconcentrations. An

efficientway to resolvethis problemis by usingthe probability density function (pdf)

approach. In general,the instantaneouscompositionof a reacting mixture of gases

can be determined from the set of kk + 1 scalars comprising mass fractions and

enthalpy ¢(Z, t) = ¢1, ¢2,"", ¢_k, Ckk+l, where kk is the total number of gaseous

species. With _ = ¢1, ¢_,"", g'kk+1 being the composition space corresponding to

¢, the mean value of any quantity (Q(¢)) can be determined from the probability

density function of joint scalar (_, P$(¢;:_,t), by (Q([p)> = f Ph(_)Q(_)d_, where

P$(_;Z,t) is defined as P_(_;Z,t)d_ = Probability{_ _< ¢ _< _ + d_}. In variable-

density turbulent flows, the density-weighted average of a function Q is defined as

Q, - (pQ>/(p) = f P_,((b)p(¢)Q(¢)d_/(p) = f P_(¢)Q(_b)d¢. Therefore, the density-

averaged reaction rate can be expressed as Ok = f/5$(_)wk(¢)d¢.

The density-weighted joint scalar pdf can be solved by the following transport

equation [Pope, 1985]:

(p) k ozk

(2.4)

where 0 denotes the mean value, eoZ is the scalar dissipation rate given by eaa --

F0¢a 0¢_ where F is the molecular diffusivity, (cable = ¢) represents the average
Ozk Oxk
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scalar dissipation rate conditioned on a certain set of scalars, and S,_ is the chemical

source term for scalar ¢_. The first two terms on the right hand side represent the

effects of chemical reaction and turbulent transport on the joint scalar pdf, respec-

tively. Both of these terms can be calculated directly with no need for modeling. The

last term stands for the effect of microscale mixing on the pdf which requires closure

approximations. In this study, the effect of microscale mixing on the pdf is modeled

by the modified Curl's mixing model [Janika et al., 1979],

a=l,3=l (2.5)

where H is the transitional probability defined as

1

H(¢', _b"l¢ ) = i_p,, _ ¢'1 for ¢ • [¢', ¢"]
(2.6)

= 0 elsewise.

The amount of mixing is modeled through a characteristic mixing time which is

It flrelated to the turbulence time scale for micromixing, 7" = k/g, where _: = 0.5(u_uk)

I'_- II _. II
• --'¢¢i U'_i"

is the turbulence kinetic energy and g = U(_xk _xk) is the turbulence dissipation

rate with t/being the kinematic viscosity. Reactive flows of practical interest usually

involve many species, leading to a large dimensionality of P(¢1, ¢2,'" , Ckk+l). The

computational expense of finite difference method is found to rise exponentially with

the dimensionality and it is impractical to solve a variable with dimensionality greater

than three. However, the computational expense of the Monte Carlo technique rises
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only linearly with the dimensionality, which is the best that can be achievedby

any algorithm. Therefore,the Monte Carlo techniqueis employedto solve the pdf

evolution equation (2.4).

The turbulent transport term canbemodeledby a gradientdiffusion model using

turbulence time and fluctuating velocitiesfrom the Reynoldsstressmodel,

._ k .,'7_.., o_P_(_; Z) (2.7)
(u_l¢ = ¢)P$(¢; Z) = -_s-_u,_u z Oz----_ '

II
where Cs is an adjustable constant (= 0.25 in jet flows), u k = uk -- fik is the density-

weighted velocity fluctuation and (u_]¢ = 2) is the average fluctuation conditioned

on a certain set of scalars.
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Chapter 3

Gas Phase Chemistry

3.1 Detailed Chemistry

3.1.1 Compilation of Detailed Chemical Reaction Mechanism

Table 3.1 and 3.2 list the bimolecular and termolecular gas phase reactions em-

ployed in our model, which include 60 chemical reactions and 24 species. The reaction

kinetic parameters are selected to cover the temperature range from 1000 K to 200

K as required by the jet plume temperature history. Photochemical reactions are

excluded as the time scale of the fastest photolytic reaction, NO2 + hv _ NO + O,

is about 2 minutes which is larger than the plume age of just a few seconds. Hy-

drocarbon reactions are also excluded because the oxidation potential of the young

exhaust plume is too small to affect the emitted hydrocarbons. We also do not at-

tempt to model ion chemistry that may influence the radical balance in the very early
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jet regime.

Most of the reaction rate parametersare extracted from the chemical kinetics

databasecollectedby the National Institute of Standardsand Technology (NIST)

[Mallard et al., 1994].Rate constantsfor the reactionof HNO2with H and O (reac-

tions (R28) and (R29)) are taken from data by Tsanget al. [1991]. JPL database

[Demoreet al., 1992]on chemicalreactionrate constantsprovidesaccuraterate data

only for commonatmospherictemperature below ,,_ 300 K. To model the kinetics of

the reactive jet flow properly, however, we need to employ rate constants which are

also valid at higher temperatures. In some cases, a simple extrapolation of the JPL

rates would give similar answers, but this may not hold for all reactions.

3.1.2 Chemical Kinetics Package

The Chemkin package [Kee et al., 1989] is a software tool designed to facilitate

simulations of elementary chemical kinetics. An important advantage of the general-

purpose and problem-independent structure of Chemkin is that it allows us to work

with the same chemical input for different application codes. As indicated in Fig-

ure 3.1, this package consists of two major FORTRAN codes, the Interpreter and

the Gas-Phase Subroutine Library, along with the Thermodynamic Database. When

the Interpreter is executed, it reads in the user's symbolic description of the reac-

tion mechanism and then extracts the appropriate thermodynamic information for

the species involved from the Thermodynamic Database. The major output of the



Table 3.1: Gas Phase Chemical Reaction Mechanism: Binary Reactions

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

Rll

R12

R13

R14

R15

R16

R17

R18

R19

R20

R21

R22

R23

R24

R25

R26

R27

R28

R29

R30

R31

R32

R33

R34

R35

R36

R37

R38

R39

R40

R41

Reaction

O + 03 --+ 202

H + O2 -----+OH + 02

H + OH ----+ O + H2

H + HO2 _ OH + OH

H + HO2 --_ H2 + 02

H +HO2 _ H20 + O

OH + O -----+H + O2

OH + 03 -'-+ HO2 + 02

OH + H2 _ H20+ H

OH + OH -----+H20 + O

OH + HO2 ----+H20 + 02

OH + H202 _ H20 + HO2

HO2 + O -----+OH + 02

HO2 + 03 -----+OH + 202

HO2 + HO2 _ H202 + 02

H202 + O -----+OH + HO2

H202 +H _ OH +H20

H202 + H -----+HO2 + H2

NO + Oa -----+NO2 + O2

NO + HO2 --+ NO_ + OH

NO + NO3 ---+NO2 + NO2

NO2 + 0 _ NO + 02

NO2 + 03 ---+NO3 + 02

H + NO2 _ OH + NO

NO2 + NO3 ---+NO + NO2 + 02

NO3 + O ---+NO2 + 02

OH + NO3 --_ H02 + NO2

HNO2 + O --+ OH + NO2

HNO2 + H _ NO2 + H2

HNO2 + OH --+ H20 + NO2

HNO3 + O ---+ OH + NO3

HNO3 + OH --_ H20 + NO3

SO + 02 ---+SO2 + O

SO + 02 --_ SO_ + 02

SO + OH --+ SO2 + H

SO + NO2 ---+SO2 + NO

SO_ + 02 --..-+ 02 + SO3

SOs + O ---+ 02 + SO2

SO3 + H20 _ H2804

HSO3 + 02 _ HO2 + SO3

CO + OH --+ CO2 + H

Rate Constant (cm 3 molecule -1 sec- 1)

1.21 x 10-11exp(-2125/T)

1.15 x 10-1°exp(-436/T)

8.10 x 10-21T2-Sexp(-1950/T)

2.8 x 10-1°exp(-440/T)

6.9 x 10-nexp(-636.9/T)

2.8 x 10-12T°4%xp(-677.9/T)

1.83 x 10-nexp(173.3/T)

1.9 x 10-12exp(-1000/T)

1.11 x 10-16Tl'64exp(-1589/T)

8.34 x 10-17Tl'54exp(355/T)

5.09 x 10-11exp(72.6/T)

2.13 x 10-13T°47exp(-179.8/T)

2.71 x 10-nexp(-224/T)

1.4 x 10-14exp(-600/T)

2.2 x 10-13exp(600/T)

2.33 x 10-11exp(-2814/T)

1.7 x 10-nexp(-1800/T)

1.77 x 10-11exp(-2890/T)

2.14 x 10-12exp(-1408/T)

3.7 x 10-12exp(240/T)

1.8 x 10-11exp(ll0/T)

6.5 x 10-12exp(120/T)

1.2 x 10-13exp(-2450/T)
1.4 x 10 -1°

1.91 x 10-13exp(-1696/T)
1.0 x 10 -11

2.3 x 10-11

2.0x 10-nexp(-3000/T)

2.0 x 10-nexp(-3700/T)

1.8x 10-11exp(-390/T)
3.0 x 10 -17

4.02 x 10-14exp(317.7/T)

1.55 x 10-13exp(-2288/T)

4.3 x 10-12exp(-l148/T)
8.59 x 10-11

1.4 x 10 -11

3.0 x 10-12exp(-7000/T)

3.17 x 10-nexp(-4455/T)
1.2 x 10 -15

1.23 x 10-1_exp(-316.8/T)

4.44 x 10-16T°'98exp(94/T)

18
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Table 3.2: Gas Phase Chemical Reaction mechanism: Three-Body Combination and
Thermal Decombination Reactions

Reaction Low-Pressure Limit ko High-Pressure Limit koc

R42 O + O _ 02 5.2 × 10-SSexp(900/T) ......

R43 O + O2 M__ 03 5.51 x 10-$1T-lSexp(152.6/T) 4.2 × 10-12exp(-183/T)

R44 H+ O M OH 1.30 x 10-_9T -I ......

R45 H + 02 M HO2 1.05 x 10-S°T-°'Texp(144.2/T) 7.5 x I0 TM

R46 H + H _ H2 1.28x 10-29T-113exp(-100.6/T) 2.9 x 10-1°exp(5821/T)

R47 H + OH __M H20 1.538×10-2ST-l'21exp(295.3/T) 2.69 x 10-1°exp(-75/T)

R48 OH + OH _ H202 + 02 6.58 x I0-29T -°s 1.5 x 10 -11

R49 HO2 + HO2 ._M H202 1.9 × 10-aaexp(980/T) 2.2 x 10-1Sexp(600/T)

R50 NO + O _ NO2 9.09 x 10-_ST -1'6 5.43 x I0-12T °3

R51 OH + NO _ HNO2 1.91 x 10-26T-l'gexp(164.8/T) 5.1 x 10-Z2exp(159.8/T)

R52 NO2 + O -_ NO3 6.21x 10-23T-S'22exp(-570.5/T) 2.65 x 10-11exp(-25.78/T)

R53 OH + NO2 M HNO3 3.50 x 10-1eT-S'2exp(-840/T) 1.84 x 10-12exp(587.2/T)

R54 NO2 + NOs _ N2Os 6.98 x I0-22T-3.4 6.40 × 10-1ST °'_

R55 N2Os M NO2 + NOs 1.5 x 10-eexp(-9104/T) 5.9 x 1011exp(-9370/T)

R56 HNO2 M OH + NO 5.0 x 106 T-S-Sexp(-25340/T) 1.20x1019T-i._3exp(-25010/T)

R57 HNO3 _ OH + NO2 1.2 x 10-%xp(-22270/T) 2.14 x 101Sexp(-24270/T)

R58 SOs + O M SO3 1.49 x 10-a2exp(-601/T) 1.19 x 10-9

R59 SO2 + OH ._M HSO3 1.97 x 10-32exp(867.3/T) 2.0 x 10-13

R60 CO + O _ COs 2.49 x 10-33exp(-1550/T) 2,66 x 10-14exp(-1459/T)

The effective second-order reaction rate constant is [Demore et al., 1992]:

= \(I + ko(T)[M] '_ 0.6{l+[loglo(ko(T)[M]/k_(T))]2}-Ik(M,T)
(ko(T)[M]/koo(T)) ]

For third-order low and second-order high pressure limits, the units are cm6molecule-2sec -1 and

cm._molecule-lse c- 1, respectively. For second-order low and first-order high pressure limits, the units are cm3sec -1

and sec-l, respectively.

Interpreterisa linkingfile,which contains allthe pertinent information on the ele-

ments, species,and reactionsof the specificmechanism. The Gas-Phase Subroutine

Library isa collectionof more than 100 subroutines that return information on ele-

ments, species,reactions,equations of state,thermodynamic properties,and chemical

reaction rates.
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Figure 3.1: Flow chart of using the CARM code with Chemkin and PSR code to

develop reduced mechanisms.
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In the intermediate regime of the wake, the jet plume will be entrained into the

wing tip vortex. To model the impact of the wing tip vortex on chemistry in this

regime, large eddy simulation (LES) may be required in order to model the three-

dimensional vortex properly. Solving the flow field by LES would demand significant

computer time, making it impossible to incorporate a detailed chemical mechanism.

A reduced mechanism capable of describing the key reactions is necessary.

3.2.1 Perfectly-Stirred Reactor (PSR) Model

Perfectly-Stirred Reactor (PSR) model will be used in the current study to develop

reduced chemistry. PSR is an idealized reactor which is assumed to be homogeneous

(spatially uniform) and well-mixed at the molecular scale. As shown in Figure 3.2,

there is a continuous mass flow in and out of the reactor as shown in Figure 3.2.

When the incoming fluids enter the reactor, it is assumed that the fluids are perfectly

mixed with the fluids existed in the reactor immediately. This assumption is justified

when the characteristic time of turbulent mixing at both macroscale and microscale

is much smaller than that of chemistry. Consequently, the rate of chemical process is

controlled solely by chemical kinetics. Turbulent effects are not accounted for in this

model because of the assumption of infinitely fast mixing.

The conservation equations for reactive species at the steady state PSR is given
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(3.1)

and the energyconservationequationis describedby

KK

fn Z(Y_hk - Y_h*k) + Q = O. (3.2)
k=l

In these two equations, Yk is the mass fraction of the kth species (there are a total

of KK species), Mk is the molecular weight of the kth species, V is the reactor

volume, rh is the mass flow rate through the reactor, &k is the molar production rate

of kth species per unit volume by chemical reactions, hk is the specific enthalpy of

the kth species, and Q is the reactor heat loss. The superscript asterisk indicates the

inlet conditions. The characteristic flow time is residence time T - pV/dn. A hybrid

Newton/time-integration algorithm is used to solve for the solution and details are

described by Glarborg et al. [1986].

3.2.2 Derivation of reduced chemistry

A reduced chemistry is feasible if certain intermediate species reach the quasi-

steady state when their production rates are nearly equal to their consumption rates.

To identify a species in the quasi-steady state, we apply the criterion:

-W ,l
xk. max(l l, Iw :l)<<1, (3.3)

where &[ and &_ are the production and consumption rate of species k,respectively,

and Xk is the mole fraction of species k. It is noteworthy that due to the rapid
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temperature changesin the near field of jet plume, a speciesthat does not satis_

the quasi-steadystate criterion in the near field may reachit in the far field, such

as radicals OH and SO3in the presentcase. One may construct different reduced

mechanismssuitable for differentwakeregimes.

The presentdevelopmentof reducedchemistryhasbeencarriedout usingthe PSR

with an interactive Computer-AssistedReducedMechanism(CARM) code [Chang,

1995]for the near field jet plume. Figure 3.1 shows the flow chart of using CARM

with Chemkin and PSR codes to develop a reduced mechanism.

Assuming the quasi-steady state for O, H, H2, H202, HO2, SO, HSO3, NO3, and

N205 (9 species out of a total of 24 species), we obtain the following eight-step reduced

mechanism:

(G-R1) 203 = 302

(G-R2) 02 + 2OH = H20 + O3

(G-R3) NO + O3 = O2 + NO2

(G-R3) 202 + NO + HNO3 = OH + 2NO2 + O3

(G-R6) 202 + HNO2 = OH + NO2 + 03

(G-R5) Oz + SO2 = Oz + SO3

(G-RT) H20 + SO3 = H2SO4

(G-R8) 03 + CO = 02 + COz

The rates for the global reactions are expressed in terms of elementary reaction rates

as:
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CdG-RI -- W3 -- L_24Jr U)8 -_-WI0 -- _13 -- W16 -- _J17 -- 0220 "_-UJ25 Jr-W27 + W29 Jr-U)30 _- 0232

-- Ld42 -- U243 -- b244 + W48 -- 0J50 -- W51 -- OJ52 -- 0253 4- OJ56 "_-W57 -- Ld58 -- _60

CdG-R2 = 0J 6 "4- W 9 + ,3210 -- OJll Jr W12 + W17 Jr W30 -- W32 "4- W47

[.DG_R3 --- WIg-}.W20--I,,d22 +W23 --W24 -- 2_25 --cO26 --_27--W36-t-W50 +CO51+W52 +cO53 --W56 --_J57

OJG-R4 -- CO21 -- W23 Jr 0225 Jr (.'J26 nu W27 -- Ld52 -- W53 Jr (.d57

• _2G-R5 -- _28 -F W29 -_-W30 -- W51 -F 0J56

WG_R6 = 0237 -- W38 Jr _J40 Jr W58

WG_R 7 -- W39

LdG_R8 --- 0)41 + W60

Although the species in the quasi-steady state do not appear explicitly in the

global reactions, their species concentrations are needed in computing the elementary

reaction rates which contribute to the global reaction rates as shown above. The

concentrations of quasi-steady state species are computed using the following expres-

sions:

[HS03] = k59[OH][S02]
k40[O2]

[NO3] = kz,[O][HN03] + k55[N205] + ks2[O][N02] + k23[N02][03] + kn[OH][HN03]
k26[O] + k2s[NO_] + k2r[OH] + k_,[N02] + k2,[NO]

[H] = kzs[og][so] + kT[Og][o] + kg[Og][g2] + k41[OH][CO]
A

A = k46[H] + kz[Og] + k44[O][M] + kls[g_02] + k29[HN02] + kiT[H202] + k6[H02]

+ ks[H02] + k,_[OH] + k,[H02] + k,[03] + k24[Y02] + k45[02}
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[o] -- k_[O_][SO]+ k_[/-/][OH]+ k_[/-/l[/40_]+ k_0[OHl[OHl
B

B = kb,33[S02]+ kzs[S03]+ k44[H][M]+ k42[Ol[M]+ k,6[H2021+ k60[CO]+ k3,[HNOa]

+ k2s[Hg02]+ k26[go3]+ k13[H02]+ kss[S02]+ kilO3]+ kT[OH]+ k52[g02]

+ kso[YO]+ k22[N021+ k43[O2]

[SOl=

[H2]=

k34[O31 + k35[OH] + ka6[N02] + k33[O21

k3,[O][HN03] + ka,[OI[HN03] + k3,[O][HN03] + k3,[O][HNO3]

kg[OH]

[H202] = k,9[HO2][H02] + k,5[HO2][H02] + k48[OH][OH]
kis[g] + k,,[O] + ki_[H] + kn[Og]

A

[H02] = -_

A = kls[H][H202] + k,6[O][H202] + k2_[OH][N03] + kn[OH][H202] + ks[OH][031

+ k,o[O2l[HS03] + k,5[H][02]

S = k6[H] + ks[H] + k4[g] + kla[O] + k49[g02] + kls[H02] + k14[O3] + kll[OH]

+ k20[NO]

[N205] = k54[NO2][N03]
k55

Consequently, the concentrations of the quasi-steady state species can be expressed

in terms of major species by a set of algebraic equations. This saves computing time

as there is no need to solve ordinary differential equations (ODE) for these species. In

addition, the stiffness of the ODEs with the global chemistry derived is reduced since

the species in the quasi-steady state are often fast-reacting. The Newton iteration
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ffa ResidenceTime, x rn

Y*(k) _ Temperature, T D.- Y(k)

h*(k) Enthalpy, h(k) h(k)

Figure 3.2: Schematic of a Perfectly-Stirred Reactor (PSR). The characteristics of the

reactor is shown, where rh is the mass flow rate, k denotes species k, and superscript

* indicates the inlet condition. The key parameter is the residence time, 7" = pV/rh.

is used to solve the coupled nonlinear algebraic equations for concentrations of the

quasi-steady state species.

3.3 Sensitivity Analysis

Sensitivity information is useful for identifying the controlling chemical steps that

have strong influence on the creation/destruction of a certain species. The sensitivity

coefficients are displayed as

OXk

_z,k = OAi' (3.4)

where f_,,k is the sensitivity of change in the mole fraction of the kth species, Xk, due

to a small change in temperature-independent pre-factor, A,, of the i-th reaction rate

k, = AiT n exp(-Ea/T).
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The transient well-mixed reactor (WMR) model enablesone to study the time

evolution of chemical kinetics of the engine exhaust gas subject to injection of ambient

air. A WMR model is employed here to investigate the sensitivity of species with

respect to reaction step. A schematic diagram for the WMR is sketched in Figure 3.3.

Similar to the PSR, a global residence time can be defined as

(3.5)
TR = rh'--a'

where mR is the mass of gas inside the reactor and rha is the mass entrainment rate.

Using TR as a parameter, conservation equations of mass, species, and energy can be

written as

dTR
dt

d _t-t R m R
= -- (3.6)

dt rR

dYRj 1 (. &Rj Mr ' 1,= --,raj- YRo) + • j = ... ,K (3.7)
TR PR

_ 1 g K "

_RrR E [(had - hnj)Y,o] - Z &Rjh_njMj Q,o,, (3.8)
j=l j=l pRCpR C.pRmR '

where the subscript R represents quantities inside the reactor and those entrained are

denoted by the subscript a. If the temperature is fixed, the WMR model is similar

to the Lagrangian box model [Miake-Lye et al., 1993b; Karol et al., 1994; K_ircher,

1995] when the following relation is used to bridge the two models

fn, K(t)

mR A
(3.9)

A is the cross-section area of a plume and K(t) is the growth rate of the plume
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WMR

engine
nozzleexit

Figure 3.3: Schematic diagram of a transient well-stirred reactor (WMR) showing

ambient air entrained into the reactor with a rate of rha. mn is the mass of gas in

the reactor, and it increases with time.

cross-section area in Lagrangian box model equation

dC_ g(t) (C, - C_) + P_,
d'---t-= Pi - Li A (3.10)

where Ci and C_ are the ith species concentrations inside the box and in the air,

respectively, P_ and Li are the production and destruction rate by chemical reactions,

and P_ is the source or sink due to other mechanisms.
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The WMR model is used to provide sensitivity information of a certain species

with respect to various reactions. The entrainment rate of ambient air is prescribed

from centerline mass increment rate predicted by the pdfjet plume model. Therefore,

the sensitivity information is informative for understanding qualitatively the center-

line species distribution in a jet plume. Figure 3.4 shows the computed sensitivities

of hydroxyl radical, OH, with respect to various reaction steps. The most important

chemistry for the OH radical is its reaction with NO via the three-body step (R51)

OH + NO + M --+ HNO2 + M. The generated HNO2 then further reacts with OH

to produce NO2 by step (R30) HNO2 + OH -+ H20 + NO2. The self combination re-

action step (R10) OH + OH --_ H_O ÷ O is the next important pathway contributing

to the OH consumption in the early jet regime when the OH level is high. (R41)

CO + OH --* CO2 + H and (R48) OH + OH + M _ H20: + M also play important

roles in this early stage. The magnitudes of the OH sensitivity coefficient start to

decline when the OH abundance begins to decrease dramatically. They become very

small when OH decreases to a very low level. Compared to the major OH consump-

tion pathways mentioned above, a very small amount of OH is consumed by SO2 via

step (R59) SO2 + OH + M _ H2SO3 + M, which has a very small magnitude of

OH sensitivity. This explains why the conversion rate of SO2 to H2SO4 is less than

1-2 % as will be shown later in this section. A small amount of OH can be gener-

ated through (R20) NO + HO2 _ NO2 + OH with minor contributions from (H24)
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Figure 3.4: Sensitivities of OH to reaction steps predicted by WMR model.

H + NO2 -_ OH + NO.

Figure 3.5 shows the sensitivities of NO with respect to different steps. As revealed

in the figure, NO is consumed mainly by its conversion to HNO3 via the three-body

reaction step (R51) OH + NO + M --+ HNO2 + M. The next important reaction chain

influencing NO consumption is step (R41) CO + OH--_ CO2 + H followed by step

(R45) H + O2 + M--4 HO2 + M. These two steps generate HO2 which reacts with

NO via step (R20) HO2 + NO --_ NO2 + OH. Reaction (R43) O + 02 --+ 03 and the
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Figure 3.5: Sensitivities of NO to reaction steps predicted by WMR model.

further reaction of 03 with NO via (R19) NO + 03 -+ NO2 + 02 also contribute to

NO reduction. Steps (RI0) OH + OH-_ H20 + O, (Rll) OH + HO2 --_ H20 +

02, and (R30) HNO2 + OH -+ H20 + NO2 are the most important reactions for NO

production. These reactions compete with the most dominant NO destruction step

(R51) for OH.

Figure 3.6 shows the computed sensitivity results of NO2. The most dominant

reaction path for NO2 production is through step (R41) CO + OH -+ CO2 + H, with
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Figure 3.6: Sensitivities of NO_ to reaction steps predicted by WMR model.

subsequent reaction (R45) H + 02 + M --_ HO2 + M and further reaction (R20) NO

+ HO_ _ NO2 + OH. NO2 is consumed mainly by the three-body reaction (R53)

NO2 + OH + M _ HNO3 + M.

Figure 3.7 shows the sensitivity of ozone, 03, with respect to various reaction

steps. O3 is mainly produced by step (R43) 0 + 02 + M --+ O3 + M and the 0 atom

is supplied via reaction (R10) OH + OH 4-4 H20 + O. As OH is depleted mainly due

to its reactions with NO, these two reactions become less important. O_ is consumed
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Figure 3.7: Sensitivities of 03 to reaction steps predicted by WMR model.

mainly by (R19) NO + 03 -_ NO2 + 02. As more 03 is entrained into the plume

with time, reaction (R19) becomes increasingly important.

Figure 3.8 shows the sensitivity of H2SO4 with respect to different steps. The

buildup of H2SO4 is initiated by (R59) SO2 + OH + M --4 H2SO3 + M, and the

product HSO3 further reacts with 02 via fast reaction (R40) HSO3 + 02 --+ HO2 +

SO3 (not shown on the plot due to the small H2SO4 sensitivity to this reaction). Fi-

nally H2SO4 is generated through (R39) SO3 + H20 _ H2804. Since OH is consumed
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Figure 3.8: Sensitivities of H2804 to reaction steps predicted by WMR model.

mainly by NO and NO2 via three-body reactions (R51) and (R53) and by self con-

sumption reactions (R10) and (R48) as depicted in Figure 3.4, the conversion of SO2

to H2SO4 is expected to be low. This low conversion fraction will be demonstrated

later in this section from the distribution of major sulfur species.

Figure 3.9 to 3.11 depict the major species evolution along the plume axis. A

second x-axis is also plotted on the top of these figures to show the corresponding

plume age. The centerline evolution of major nitrogen species is shown in Figure 3.9.
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At about 5 m past the nozzleexit plane, the turbulent stirring (macroscalemixing)

becomesimportant and the correspondingplume ageis about 3 ms. The primary

exhaustproductsNO andNO_stay nearlyconstantup to this point and thendecrease

slowly. In the early jet regime, small amountsof NO and NO2 are oxidized by OH

(not discernibleon this logarithmic scale)via three-body reactions(RS1)and (R53).

However, these reactions lead to significant amounts of nitrous acid, HNO2, and

nitric acid, HNO3, as comparedto their backgroundabundances.A small fraction

of HNO: is consumedthrough (R30) when the OH level is high. After OH becomes

depleted(compareFigure 3.11), the chemicalbuildup of HNO2and HNO3ceasesand

thesesecondaryexhaustproducts are diluted like tracers,similar to the fate of NOx

in the late jet regime. At later stagesof plume dispersiontheseacids may either

becomephotolyzedunder daytime conditions, or depletedby heterogeneousremoval

processes.

In the earlyjet regime,the nitrate radicals,NO3,aregeneratedvia (R52)NO: ÷ O

+ M -_ NO3 + M and (R32) HNO3+ OH _ H20 ÷ NO3. The chemicalproduction

of NO3 ceasesas soon as O and OH becomedepleted and its further evolution is

governedby plume dilution. In the early jet phase,dinitrogen pentoxide, N205, is

producedvia (R54) NO2+ NO3+ M --_N205+ M in contrast to the strong thermal

decayreaction (R55) N205+ M _ NO2+ NO3+ M. Hereafter the N205 abundance

increasesquickly by entrainment,and at the endof jet regime,N205 already attains

its ambient level. The NO3levelat the end of the jet regimeis much lowercompared
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Figure 3.9: Centerline evolution of mole fractions of major nitrogen species.

to its background abundance due to step (R54).

In the the jet plume, the ratio of NO= (= NO + NO2) to NO r (= NO= + HNO2

+ HNO3 + 2N205), assumed to be unity at the nozzle exit plane, decreases slightly

as NO r is built up. [NOx]/[NO_] is found to be approximately 0.975 at the end of jet

regime.

Figure 3.10 shows the centerline evolution of major sulfur species. The sul-

fur reaction chain is initiated by oxidation of the exhaust SO2 by OH via (R59)
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SO2+ OH + M _ HSOa+ M which immediately builds up HSOa. This is followed

by fast reaction (R40) HSOa+ 02 --+HO2 + SOa,in which SO3is generated. Sul-

furic acid, H2SO4,is then generatedthrough (R39) SOa+ H20 --+H2SO4.Reaction

(R59) is the rate-limiting step in this three-reactionsequencein producing H2SO4.

Consequently,SO2oxidation is indirectly coupledwith NO_, CO, and HOx reactions

that compete for OH. The maximum conversionof SO2to H2SO4, (XH_so4)m_ is
(Xso )o

less than 1%. After OH is depleted, the SO3 concentration reaches its maximum and

then decreases due to plume dilution. H2SO4 exhibits a similar evolution as SOs,

except that it is shifted to slightly downstream distance. H2SO4 losses due to binary

H2SO4-H20 nucleation is not considered at this time. It will be discussed in detail

later in Chapter 4.

Figure 3.11 depicts the evolution of major oxygen and hydrogen species along

the plume axis versus downstream distance. Hydroxyl radical OH, being the most

abundant primary HOx exhaust product, is responsible for the rapid production of

other radicals. In the early jet regime, O is produced via (R10) OH + OH -+ O

+ H20, which further produces ozone through the three body reaction (R43) O +

02 + M -_ 03 + M. In the late jet regime, mixing becomes important and the

further increase of the 03 concentration is due to the entrainment of ambient ozone.

However, as long as the NO level stays high, ozone is continuously consumed due to

its reaction with NO via (R19) NO + 03 _ NO2 + 02 and stays below its ambient

level within the jet plume. The self-reaction (R48) OH + OH + M -_ H202 + M is
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Figure 3.10: Centerline evolution of mole fractions of major sulfur species.

the most important pathway for the production of hydrogen peroxide, H202, leading

to a maximum abundance around the point of the strongest mixing. In the late jet

regime, H202 decreases due to plume dilution. On longer timescales H202 may either

act as a HO= sink through heterogeneous removal or as a slow source for regeneration

of OH by photolysis.

The buildup of hydrogen atoms H in the early jet regime is initiated by reaction

(R41) CO + OH _ H + COs. H further reacts with 02 via (R45) H + O2 + M
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HO2 + M which is the major production pathway of the hydroperoxy radical, HO2.

HydrogenmoleculesH_aresubsequentlyproducedvia (R3) H + OH _ O + H2and

(R5) HO_ + H --_H2+ 02, and by (R46) H + H + M _ H2+ M whenthe H level

is high.

It is observedin Figure 3.11that the OH concentrationdramatically decreasesin

the intermediate stageof jet mixing between1 and 10 m past the nozzleexit. As

depicted from the OH sensitivity coefficientsin Figure 3.4, the rapid removalof OH

is mainly due to its reaction with NO and NO2 via (R51) and (R53)and partially

due to self reactions (RI0) and (R48). The reactions that sustain the O and H

concentrationsin the isothermaljet corearequickly reduceddue to the depletion of

OH radical. Hencethe O and H atoms quickly decreaseto negligible levelsand only

slowly recoverin later stagesof plume dispersiondue to OH regenerationthrough

photolysis. OH and HO2 abundancessharply bend in the decayingjet flow field,

which is due to the entrainmentof HO2from the ambientair and its quick conversion

to OH by reactionwith NO through (R20) NO + HO2 _ NO2+ OH.

Figure 3.12showsthe centerlinetemperatureand major speciesdistributions ob-

tained with the detailed and the eight-stepreducedmechanisms.It is assumedthat

the fluids in each computational grid are well-mixed. The centerline temperature

stays nearly constant up to the point wherethe ambient air begins to mix with the

centerline gaseousspecies.Temperaturedecreasesrapidly and reachesnear ambient

level at the end of jet plume. Predictionsof the temperature and major speciesevo-
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Figure 3.11: Centerline evolution of mole fractions of major hydrogen and oxygen

species.

lutions by the eight-step reduced mechanism is shown to be in excellent agreement

with those by the detailed mechanism.

Figure 3.13 shows the results obtained under the same conditions as in Figure 3.12

but with the subgrid mixing accounted for by the modified Curl's mixing model.

When the interaction of subgrid mixing with chemistry is considered, the eight-step

reduced mechanism still gives results that are in good agreement with those predicted

by the detailed mechanism. Simulation with the reduced mechanism is about 3.4 times
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faster in computer CPU time comparedto the computationwith the detailed onefor

the near-fieldjet plume.

Figure 3.14comparesthe centerlinemajor speciesdistributions with and without

the interaction of subgrid turbulent mixing and chemistry. The differencesbetween

thesetwo profilesare relatively minor. The predicted resultswith the subgrid mixing

modeledby the modified Curl's mixing model show slightly lower levelsof species

concentration comparedto the resultswith the subgridwell-mixed.

There havebeenno measurementsof major speciesconcentrationscarried out in

the jet plume regime. Faheyet al. [1995]carried the in-situ measurementwith an

ER 2 researchaircraft flying in the lowerstratosphereduring the NASA Stratospheric

Photochemistry,Aerosoland DynamicsExpedition (SPADE) program. To compare

our modelpredictions with their measuredvalues,weperform calculationsfor an ER

2 aircraft with flight conditions and initial exhaustpropertiesgiven by Andersonet

a1.[1996].Figure 3.15comparesthe ratios of various chemicalspeciesconcentrations

abovethe ambient backgroundlevels for an ER 2 aircraft from the presentpredic-

tions at 1 km to UNIWAKE results at 20.2 km by Andersonet al. [1996]and to

the measuredvaluesat 126.0km by Faheyet al. [1995]. The present calculations

presentresultsat a muchsmallerdistancedownstreamcomparedto the UNIWAKE

results and the SPADE data. However,since chemical kinetics is negligible after

100m downstreamand the evolution of speciesconcentrationis due almost entirely

to mixing, the ratios of ANO2/ANO, ANO::/ANO_, and ANO_/AC02 are gen-
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erally independentof the dilution level and thus tend to stay constant downstream.

The comparison shows good agreement among different predictions and the SPADE

measurements.
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Figure 3.12: Centerline temperature and major species distributions with the detailed

(lines with squares) and the reduced (lines with reversed triangles) mechanisms. Sub-

grid is assumed to be well-mixed.
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Figure 3.13: Centerline temperature and major species distributions with the detailed

(lines with squares) and the reduced (lines with reversed triangles) mechanisms. Sub-

grid mixing is modeled by modified Curl's mixing model.
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Figure 3.14: Centerline major species distribution by pdfjet simulation, with different
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well-mixed, and lines with reversed triangles are results with subgrid mixing modeled

by modified Curl's mixing model.
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Chapter 4

Aerosol Dynamics

4.1 Introduction

The emission and formation of new aerosols caused by subsonic aircrafts and their

subsequent evolution in the upper troposphere and lower stratosphere have become

an important research issue. Global impact of fleets of aircraft depend on how much

H2SO4-H20 aerosols are generated in the near-field aircraft exhaust [Weisenstein,

1996]. In this regime, not only major gas-phase chemical reactions take place, but

also a large number of small-sized volatile H2SO4-H20 aerosols are generated due to

binary homogeneous nucleation. Soot activation as water condensation nuclei also

occurs in this regime. Preliminary analysis of data collected under the SUCCESS

(SUbsonic Aircraft: Contrail and Cloud Effects Special Studies) program [NASA,

1996] has indicated a high level of small volatile aerosols whose number density varies
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with the massloading of fuel sulfur [Ballenthin et al., 1996].

In-flight field measurementsof aerosolsby the instrumentation aboard the ER2

aircraft in plume encountersof the Concordewake[Faheyet al., 1995]havereported

between12%and 45%conversionof fuel sulfur to sulfuric acid (assumingthe diameter

of sulfuric acid aerosolsis 10nm) after approximately 16minutesat 16.2km from the

nozzleexit plane. Ground-basedmeasurementindicatessulfur oxidation greaterthan

0.4%at the early plumestage[FrenzelandArnold, 1994].Modelingstudiesof aircraft

plume chemistry havepredicted that the conversionof fuel sulfur to sulfuric acid is

limited to 0.5%-2% [K_ircheret al., 1996a,Brown et al., 1996a,Wang and Chen,

1997]. Thesenumerical estimatesare basedon the assumption that fuel sulfur is

emitted from the engineasSO2which is subsequentlyconvertedto sulfuric acid by gas

phasereactionsin the exhaustplume. The discrepancyseenbetweenthe experimental

estimateby Faheyet al. [1995]andthe numericalresultsraisesconcernon the validity

of the aboveassumption.Hence,field measurementsof sulfur speciationat the nozzle

exit plane aresuggestedto resolvethe disagreement.

Using numerical modeling, Brown et al. [1996b]haverecently estimated the ex-

tent of fuel sulfur convertedto volatile aerosolprecursorsduring combustionand the

subsequentturbine flow for the subsonicATTAS and the supersonicConcord air-

craft engines.The resultsof their analysissuggestedthat the conversionrate of fuel

sulfur to S(VI)(SO3 and H2SO4)is between2% and 10% in the engine. The large

uncertainty in the estimated valuesis due to the limitations of the models used in
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that study to characterizethe oxidative pyrolysis of typical jet enginefuels and the

three-dimensionalfluid dynamicsfor real combustorsand turbines. The lack of high

temperature kinetic data for important sulfur oxidation reactionsalso contributes to

the uncertainty.

The laboratory studiesby Wyslouzil et al. [1994]with samplesof carbon black

have indicated that carbon is hydrophobic. This result suggeststhat soot particu-

lates emitted in aircraft exhaustsmay be poor condensationnuclei in the absenceof

activating precursors. Both Wyslouzil et al. [1994]and Rogaskiet al. [1996]have

observedin their experimentsa substantial increasein wateruptake on carbon in the

presenceof sulfuric acid. Therefore,the potential role of sulfuric acid formed through

sulfur oxidation is currently of particular interest to soot activation.

In this chapter,wewill considerthe microphysicalprocessesincluding binary ho-

mogeneousnucleation,aerosolcoagulation,adsorption,and heteromolecularconden-

sation. Theseprocessesarecoupledwith gasphasechemicalreactionsand turbulent

mixing in an axisymmetric flow. Comparedto the modeling work of Brown et al.'s

[1996a;1996c],the presentwork assessesthe impactof SO3emissionson the formation

and evolution of aerosolsandstudiesthe condensationprocesseswith a kinetic model.

Kiircher [1997]studied the near-field microphysicalprocesseswith a box model, in

which the aerosolprocesseswerenot coupledto the flow field and nospatial resolution

wasoffered. The mixing and cooling rates along the plume trajectory were chosen

to representthe evolution of the bulk of the exhaust. Currently, there are only few
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aerosolmodulesimplementedin globalchemistrymodels[Bekkiand Pyle, 1992;Tie et

al., 1994;Weisensteinet al., 1997].However,the formulationsof aerosolmicrophysics

usedin global models are too simplified to be applied to near-field aircraft-related

aerosolsimulations.

4.2 Aerosol Model Structure

The time evolution of number density due to homogeneous nucleation, coagulation,

and condensation can be described by the following equations

dYv'"-_ -" Jh°rn -b (_t '_)c°ag q- ( _ )c°nddt (4.1)

dNc,,-di = ( + (4.2)

where Nz is particle number density representing particle number in size bin i per

cm 3 of air with the unit of #/cm z, and J denotes the nucleation rate. The subscript

v indicates volatile H_SO,-H20 aerosols, and the subscript c indicates either initially

emitted bare soot particles or later evolved soot-cored droplets. It is computationally

efficient to combine the number density of bare soot and that of soot coated with

H2SO4-H20 as one variable, which will be justified in section 4.5. Given the number

density N, the mixing ratio x can be computed by x = N/Na, where Na is the number

density of air (Na = P/(kBT) where kB is Boltzmann's constant). Details of each

term in equations (4.1) and (4.2) will be described in the next section.
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4.3 Aerosol Model Formulation

The size range of particles is discretized into a number of jma_ radial size bins.

Each set of size bins is based on a geometrically increasing particle volume. The bins

are centered at volume

Vi - VnATVi-1 (4.3)

with VnAT _ 2. Correspondingly, the particle radius rj is located at

rj = (VRAT)I/3rj_I . (4.4)

The bin widths increase according to

VnAr- 1 (4.5)A5 = 25VL--__ ¥ 1

( 2 )'lati/lla _l)r6. (4.6)Ari = VRA 7 + 1 t" RAT

The upper and lower limits of each particle size bin in terms of radius are

_ ( 2 ae )rj,,p - \VnAT + 1 rj (4.7)

rj,i_ = VnAT + 1 rj. (4.8)

The total number of bins covering the particle size range from rl to rj is

j,_ = 1 + ln(rffrl)a
In V_T (4.9)

In this study, we use rl = 0.3 nm which is about the size of the sulfuric acid embryo,

VnAT = 2, and jma_ = 45 which leads to rj,_o= _ 8 pm by doubling the volume for

consecutive bins.
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The typical sizedistributions of nascentprimary soot particlesareassumedto be

log-normal, with median radii of 15-30 nm, modal widths of 1.4-1.6, and number

densitiesof 10_-10_ cm-3 [Hagenet al., 1992; Petzold and SchrSder,1998].

log-normaldistribution for the sizeof soot particlescan beexpressedas

(lnr- lnfg) 2]n(lnr)= gt exp- _ia _ jV/_n a 9

The

(4.10)

where n(ln r)d In r is the number of particles per cm a of air in the size range from In r

to In r ÷ d In r, Nt is the total number of particles of all sizes per cm a of air, fg is the

median radius, and a 9 is the geometric standard deviation. The number density of

particles in the jth size bin centered around the radius ry is given by

4.3.1

dN = n(ln r)d In r - n(ln r) dr
?.

N,

v_r In ag

Homogeneous Nucleation

exp

(4.11)

The classical nucleation theory is based on the equilibrium state of critical-sized

liquid droplets, or embryos, in contact with their parent vapors. The theory gives the

nucleation rate in the form of

J = Aexp(-AG'/(P_T)), (4.12)

where J is the nucleation rate with the unit of embryos/(cma-sec), A is the kinetic

prefactor, AG* is the change of the Gibbs free energy during the phase change for

the formation of an embryo, and /_, is the universal constant. The exponential

dependence of J on AG* implies that AG* must be accurately calculated.
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The changeof the Gibbsfreeenergyfor the formation of a liquid embryoin contact

with a binary vapor mixture canbewritten as [Flood, 1934;Reiss,1950;Doyle, 1961]

AG = n,(/_ - #_) + n2(#_ - #_) + 4rrr'2a, (4.13)

where nl is the number of moles of component i in the embryo, #_ is the chemical

potential of the ith component in the liquid solution with the unit of J/mole, #_ is

the chemical potential of the ith component in the gas phase, a is the surface tension

with the unit of J/cm 2, and r* is the radius of an embryo. The first two terms on the

right side represent the energy that is gained by forming the liquid phase and the last

term is the energy required to create the surface of the liquid droplet. The change of

chemical potential in transforming from gas to liquid phase for each component is

.414.
where Pi represents the partial pressure of gas-phase species i and Pi_ol is the equi-

librium vapor pressure of species i over a flat surface of the mixed solution.

The critical free energy AG" is determined as the value of AG at the saddle point

in the two dimensional energy surface. The conventional way is to solve iteratively

a pair of generalized Kelvin equations [Mirabel and Katz, 1974] representing the

derivatives of AG with respect to nx and n2:

On1].2 = O,
( O ,'XG "_

],, = o. (4.15)

However, this method involves tedious calculations in a two-dimensional parameter

space. Recently, Zhao and Turco [1995] have devised an efficient method for locating
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the saddlepoint (critical Gibbs free energy) that reducesthe searchfor the roots of

the generalizedKelvin equationsin a two-dimensionalspace(nx,n2) to a searchin

two one-dimensionalspaces.They transformed the coordinatesystem from (nl, n2)

to (w, V), that is, the weight fraction of sulfuric acid and the volume of a solution

droplet. They are defined as

M2n2

w = Mlnl+ M2n2 (4.16)

and

Minx + M_n2
V = , (4.17)

P

where M, is the molar weight of species i and p is the density of the solution. Then

a revised version of the generalized Kelvin equations is derived from the derivatives

of AG with respect to V and w for a binary system as

dV a

d"A = Y' (4.18)

where

- M, dw w)] O, (4.19)

= w A 1-w
Y -P[_ #2+---_1 A#I ],

and A = 4rr 2 is the surface area of an aerosol.

(4.20)

The advantage of the transformation is that equation (4.19) is independent of

radius so that w* can be obtained iteratively by solving this equation alone. Equa-
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r'- 2o(_')
y(_.). (4.21)

Hence, once w ° is determined, r ° can be obtained immediately with equation (4.21).

Using equation (4.13), the Gibbs free energy at the saddle point is

4 , *2

zxa_ : _o(_ )r (4.22)

computed from

N_ = p(w*,T)V*(1-w*)/ml (4.24)

N_ = p(w*,T)V'w*/m2, (4.25)

where the volume of the embryo is V* = 47rr*a/3, rnl and m2 are the molecular masses

of H20 and H2SO4, and p is the mass density of the liquid solution droplet.

The homogeneous nucleation rate with the unit of embryos/(cm3-sec) is

Jhom = 4rr*2/32Nl exp \ RuT ' (4.23)

where 82 is the gas kinetic impingement rate of H2SO4 molecules towards the embryo

surface, & = N2(ksT/27rm2) 1/_ with the unit of molecules/(cm2-sec), and N1 is the

number density of water molecules in the gas phase. The prefactor, A = 4rr*2f_2N1,

is valid for the usual situation when N1 >> N2.

Finally, the critical numbers of H2SO4 and H20 molecules in an embryo are then
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4.3.2 Coagulation

Coagulation model is basedon Toon's [1988]approachwhich conservesparticle

number and volume. The changeof numberdensity of volatile H2SO4-H20particles

due to coagulationcan bedescribedby

t__ _dN_,i 1 N2 Vj
-_K,-x,,-, + N_,,, Z(1 _)gOY: Jat

j<i

/<i--1 j#i

-N_,, E K,3Nc,j (4.26)

J

where K_j = Kji is the Brownian coagulation coefficient between particles with size

indices i and j. The subscript v denotes the volatile H2SO4-H20 particles and c

denotes the soot or the soot coated with H2SO4-H20.

Because bin i has twice the volume of bin i - 1, collisions between bin i and bin j,

where j is less than i, result in particles of volume intermediate between bin i and bin

i + 1. The volume ratio Vj/Vi is the fraction added to the larger bin by this collision.

Boundary conditions in coagulation are imposed to conserve mass. Instead of

allowing particles to leave the largest size bin due to coagulation, those particles are

kept in the largest size bin. Special conditions also apply to the production terms in

the first size bin. It is assumed that there is no particles of size smaller than the first

size bin so that coagulation cannot produce particle of size j = 1.

The Brownian diffusion kernel is calculated using the interpolation formula by
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Fuchs [1964]

K,j = 4_r(ri + rj)(Di + Dj) (4.27)
r_ + r3 4 (Di + D j) 1 '

+
v 2 _1/_/_ rj)r, + r_+ (_,_+ _)'/_ (v_,,+ ,_, ,., +

where rz and rj are the radii of particles in the ith and jth size bins and _ is the

sticking coefficient which is assumed to be unity in the present work. Ds and Dj are

the particle diffusion coefficient that can be calculated from the Einstein relation

Di = kBBiT, (4.28)

where kB is the Boltzmann constant.

mobility given by

T is the absolute temperature and B is the

_[ (BI = 1 1 + 1.246Kn_ + 0.42 exp , (4.29)
6n_ri Kn, ]

where 77is the viscosity of air and Kn is the Knudsen number defined as the ratio of

mean free path of air and particle radius

Kni = --. (4.30)
ri

vp,i is the mean thermal velocity of a particle

vp,i \ _rm---'T/

i/2

, (4.31)

where mi is the mass of the particle, tfi is a correction factor given by

_, = (2ri + Ap,,)3_ (4r_ + )_p2 i)3/2 _ 2ri, (4.32)
6r_Ap,I



with the mean freepath of a particle in sizebin i being

8D,
)_p,i --

7r Up,i
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(4.33)

It can be shown that the coagulation coefficient increases with the difference be-

tween rl and r2 and it reaches minimum for coagulation between particles with the

same size. Coagulation between the soot particles is not important due to their

low amount compared to the large amount of H2SO4-H20 particles, and therefore is

neglected in the wake-regime studies. This is because the time scale required to intro-

duce a significant change in the distribution function for these aerosols is longer than

the time available in the near-field plume. The characteristic time for coagulation is

estimated as [Flagan and Seinfeld, 1988]

1

tcoag -- n'-'H '

where n isthe number density of particlesand the typicalvalue for the coagulation

constant isH = 10-9 cma/sec. This impliesthat the number density must liebetween

10s and 10l°cm -3 in order for coagulation to be important in the near-fieldexhaust

flow. The number density of H2SO4-H20 embryos formed through binary homoge-

neous nucleation issufficientlylargeforembryo-embryo and embryo-soot interactions

to be important on a timescale of a few seconds. However, the soot particulates

emitted in the exhaust flow are typicallypresent at much lower levels.

Scavenging of H2SO4-H20 aerosols by the soot particles is an important soot

surface chemical activation pathway. Wetting the soot particles by this mechanism
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is assumedto have no effect on the sizeof the soot becauseit can only lead to a

monolayercoverage.However,the heterogeneouscondensationon the liquid coating

of soot is coupledto radial growth and might causea shift in the sizedistribution.

4.3.3 Soot Activation

Soot particles can be activated as water condensation nuclei by adsorption of

oxidized sulfur species (H_SO4 and SOa) and by scavenging (coagulation) of volatile

sulfate aerosols. The fraction of soot surface that is covered by oxidized sulfur species

is defined as 8, = A(S03 + H_SO4)/As,,, where As,_ is the surface area density of soot

in size bin i, which is 24rr_,,Nc,:. The surface coverage due to the above two activation

pathways is 8: = 0ads,, + 8,_,,.

Kiircher [1998] presented a kinetic formulation which gives the maximum sulfur

adsorption on soot. Since rs,i < 100 nm, vapor adsorption on fresh soot takes place

Therefore, the corresponding rate of change of _ is givenin the gas kinetic regime.

by

_ads,i fJ
dt = a_(Cso3 + Cu2so4) x 6.02 x 10231__,- 0, (4.34)

(7O

where c_ is the sticking probability which is set to zero for T > 420 K and equal

to unity for T < 420 K, _ is the thermal speed for the SO3 and H2804 molecules

evaluated at their reduced mass, C is the molar density of gas phase species, and

Go _ 5 X 10 TM cm -2 is the approximate number of active sites available on the soot

surface. This kinetic formulation gives the maximum adsorbed sulfur mass and it
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representsthe upper bound to the binary H2SO4-H20heterogeneousnucleationrate

on the soot surface.

The changeof surface coverage for a soot particle in size bin i by scavenging

volatile droplets is determined by

Jm{iz

j----1

where K is the coagulation coefficient and N_ is the number density of volatile droplet.

The gas phase losses of SO3 and H2S04 due to adsorption is (x (1 - 0), i.e., they are

proportional to the available "dry" soot surface area

= -a'_Cm _ 4zrr_,,Nc,,(1- 0,), (4.36)
\ dt ]ads i=l

where m denotes H_S04 or SO3. This model also accounts for the condensation of

H2SO4 and H20 on the part of the soot surface that has already acquired the liquid

coating. Consequently, condensation rates on soot and related gas phase losses scale

with 8.

4.3.4 Condensation

Condensation can occur on the liquid volatile aerosols and on the partial liquid

coating on the soot surface. The equilibrium vapor pressure of H_SO4 over the solution

is so small that once H2SO4 molecules are condensed they can not re-evaporate. In

contrast, droplets may take up or evaporate H:O, depending of the evolution of

temperature and the partial pressure of H_O in the plume.
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The condensationformulation followsthe derivation by Fukuta and Walter [1970],

which wasbasedon the ideaof Fuchs[1959].The spaceoutsideof a particle isdivided

into two zones,the layerr _<R _< r+5 and the region beyond R > r+5 where 5 _ 2a,

the molecular mean free path of air. The conventional diffusion equation, which is

based on the assumption that vapor density in air is continuous, is valid for R _> r + 5,

while gas kinetic theory is applied within the layer. The condition of continuity of

vapor flux across the surface R = r + 5 is invoked to complete the description.

Consequently, the change in moles of gaseous species m due to condensation on or

evaporation from an aerosol with radius ri is

dnm.idt = 4rriD_'i ( Pm - P'_a'sat )P_T' (4.37)

where the modified diffusivity is

D_

D_'i = ri 4D, (4.38)

with c_ being the mass accomodation coefficient. For condensation onto liquid surfaces

considered in the present model, a is taken as unity. The mean thermal velocity of

gaseous species m is given by

om= V (4.a9)

Without the diffusivity modification, equation (4.37) is in the conventional Maxwell's

form, which would strongly overestimate the growth rate for submicron particles. For

soot particles, since condensation can only take place on the activated fraction 8 of
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the surface,the right hand sideof equation (4.37)needsto bemultiplied by 8 when

calculating condensation on soot particles.

The saturation pressure is obtained by the Kelvin equation

Pm.i,_ot = exp ( 2a_m ) (4.40)Pm,_,,at P_ Tr, '

where Pm,i,,at is the saturation vapor pressure of gaseous species m over a spherical

droplet of radius rl, and Pm,oc,,_t is the saturation vapor pressure of species m over a

fiat surface of a liquid with the same composition as the droplet. The Kelvin equation

(4.40) states that the saturation vapor pressure over the surface of a droplet is greater

than that over a flat surface. The smaller the droplet, the larger is the saturation

vapor pressure. Consequently smaller droplets tend to evaporate, while larger ones

tend to grow. The effect of curvature is important for droplets less than 0.1 #m.

Denoting the total radial growth rate of a particle (volatile droplet or soot coated

with H2SO4-H20) in size bin j due to condensation by drj/dt, the flux of particles

growing from rj to r_. + At3 per unit time and per cubic centimeter of air is

gj drj (4.41)
Gj = Ar t dr'

drj
where the expression of -_- will be given later in this section. The rate of change

of particle abundances due to condensation (G_ > 0) and evaporation (Gj < 0) will

not affect the total number of each particle type. Therefore, the net rate of change of

each particle type in size bin j over a time step can be expressed as [K_ircher, 1998]

AGj = max{0, G__a} + Imin{aj+l,0}l- IGjl. (4.42)
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The first term on the right hand side representsthe possiblegain of particles in size

bin j from size bin j - 1 upon condensation. The second term denotes the gain of

particles from size bin j + 1 due to evaporation. The last term is the loss of particles

in size bin j by growth or evaporation. To conserve the total particle numbers in each

type, boundary conditions at size bin j = 1 and j -- jmax are set so that particles are

kept within the size range [rmin, rrna_].

Using equation (4.42), the term (dN/dt)_o,_a in equations (4.1) and (4.2) can be

expressed as

_ ,,c,
dt ]_ = _ (Po/kBT)" (4.43)

The change of radius due to condensation or evaporation is

drj { Orj ] dnmd
= \ / , m = H_O, H2S04, (4.44)

where the partial derivative can be obtained from mass conservation in the liquid

c3r3 _ Aim

Onm,i 4r psotr_. "
(4.45)

The condensation and evaporation processes control the weight fraction of H_SO4

in the liquid solution, Wx2so4, on which the thermodynamic quantities depend. This

especially holds for the saturation vapor pressure which in turn determines the con-

dnrnj

densation rate dt Therefore it is necessary to determine Wn2so,. From the

definition

WH_SO4,j = MH_so, NH2so4
_rn M, nNmh ' rn = H2S04, H20, (4.46)
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where

Z MmNmo = 4rpsar_/3,
m

(4.47)

and taking derivative of equation (4.46) with respect to time and combining equations

(4.44) and (4.45), we get

dt rj [ \ dnmo ] dt

w arjl
dt J ' m = H20, H2S04. (4.48)

4.3.5 Summary of Coupling between Chemistry and Aerosol

Dynamics

The evolution equations of gas-phase H2SO, and H20 will have additional sources

or sinks due to the microphysical processes mentioned in the previous sections. The

rate equations for H20 and H2SO, are modified as follows

dC1
°L4 Cm i_°_dt Z 4rr_, iNc,i(1 - 0,),

dnl,i 1v . dnl,i -
--=&l-Jh°"_n_-E dt "'_"-Z--_ -N_''-_

i i i i=1

(4.49)

dn2,i _ dn2,i _ .
dt

i i i

Smaz

i=I

(4.5o)

where the subscript 1 denotes H20, and 2 denotes H2SO4, C is the species gas-phase

concentration with unit of mole/cm 3, and & is the gas-phase chemical reaction rate.

Jhom is the homogeneous nucleation rate given by equation (4.23), n_ is the moles of
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gaseousspeciesm in a H2SO4-H_O aerosol of critical size, and N, is number density

of particles in size bin i with the subscript v as volatile H2SO4-H20 aerosol and

dn 1,i
the subscript c as soot coated with H2SO4-H20. Terms due to condensation,

dt

dn2,i
and --ff_, can be obtained from equation (4.37). The last term accounts for soot

activation. Equations (4.49) and (4.50) reveal the coupling of microphysical processes

with chemistry kinetics through concentrations of H2804 and H20. Microphysical

processes also couple with turbulent flow field from mixing of the exhaust plume with

the ambient air.

4.3.6 Thermodynamic Properties

Various thermodynamic quantities are needed for simulation of the aerosol dy-

namics. Described in this section are details of methods used to calculate or estimate

these properties.

Mean free path:

At the standard condition, P0 = 1.013 x 105 Pa and To = 293.15 K, the molecular

mean free path of air is _=,0 = 6.6 x 10 -6 cm. Since _o =
kBT T

o¢ _, for otherv/2Plrd2_

levels of P and T,

,_,, = Ao,oPo T (4.51)
PTo"
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Diffusivity:

The diffusivity of water vapor D_ in air is obtained from the extrapolation by

Pruppacher and Klett [1997] with the following best-estimated relation for tempera-

tures between -40°C and 40°C

) (4.52)

with To = 273.15 K, P0 = 1013.25 mbar, and D_ in cm2/sec. As D_ c( v_a and

v c_ 1/v/_, we get Dr _ 1/v/-_. Therefore, Dv,H2S04 can be obtained through

D_,H_SO_ = D_,H2O _ (4.53)
v/M.,so,

Surface tension:

The surface tension of H2SO4-H_O solutions has been reported by Sabinina and

Terpugow [1935] for 15 levels of H2SO4 content. Data were reported for temperatures

between 10°C and 50°C in 10°C intervals. The reported data are fitted with an

eighth-order polynomial at each temperature. The surface tension at temperatures

between tabulated values is then determined by the linear interpolation.

Solution density:

The solution density is obtained from tabulated values [Perry, 1963]. Tabulated

data were given for temperatures between 0°C and 100°C and for H2SO4 weight

percent between 0 and 100. The tabulated data at each temperature are fitted with
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an eighth-orderpolynomial. The density at temperaturesbetweentabulated data is

also computedby the linear interpolation.

Equilibrium partial vapor pressure:

The equilibrium partial vapor pressure over the binary solution H2SO4-H20 is

presented by Taleb et al. [1996] in a very simple form, which is valid over the entire

range of concentrations for temperatures in the range 190-298 K. In terms of a Van

Laar type equation, the activity coefficients 71 and 72 of components 1 and 2 in a

binary system can be expressed as [Taleb et al., 1996]

T log 71 = [X2

T log 72 = [X1

where T is the temperature in degree K, X

AaX22

+ B1X112 (4.54)

+ B2X2] 2'

is the mole fraction, and A, and Bi are

coefficients for a given binary solution. Based on the data of Zeleznik [1991], the

following expressions are used in equation (4.54)

2.147 x lO s 2.33 x lO s
A1 = 2.989 x 103 +

T T 2

4.074 x 106 4.421 x 108
A2 = 5.672 x 10 a +

T T 2

1

B1 = B--_ = 0.527,

where Aa and B1 are for water, and A2 and B2 are for sulfuric acid.

(4.55)

The definitions of the activity coefficient 7, and the activity a, are given by

(4.56)
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ai Psot,, (4.57)
7, = = X, Po,,'

where P, oZ,, is the equilibrium partial pressure of component i over a solution contain-

ing i and P0,i is the equilibrium pressure of pure i. It is straightforward to compute

Paa,, provided that P0,, is known, which is generally the case, through

Psot,, = 7,X, Po,,. (4.58)

The equilibrium vapor pressure of pure water expressed in millibars for the temper-

ature range between 220 and 320 K is taken from the compilation of Tabata [1973]

log Po,H2o(mbars) = 8.42926609
1827.17834 71208.271

T T 2
(4.59)

And the equilibrium vapor pressure of the pure sulfuric acid is given by Ayers et al.

[1980]

In Po,H2SO4(atm) = -10156/T + 16.259. (4.60)

Mixture molar volume:

The molar volume of a two-component solution is given by

M (1 - x2)MI + x2M2
= -- = , (4.61)

P P

where x2 is the mole fraction of component 2. For a two-component mixture, the

partial molar volume of component 1 or 2 in a solution can be obtained through the

tangent line at a given mixture composition on the composition curve _ versus x2 (can



69

beobtained experimentally)at the intercept x2 = 0 or x2 = 1 as shown in Figure 4.1.

Mathematically, the partial molar volumes are expressed as

and

d0
Vl = v - 7-x2 (4.62)

ax2

such that (1 - x2)_1 + X2'U2 = V.

do
_ : _ - T--(:_ - 1),

ax2
(4.63)

4.4 Threshold Condition for Contrail Formation

from Aircraft Exhaust

Contrails (condensation trails) are observed behind an aircraft only under certain

conditions depending on various factors. The threshold criterion for contrail formation

was first developed by Appleman [1953]. He explained that contrails are expected to

form in the engine exhaust plumes when isobaric mixing between the hot and humid

exhaust gases and cold ambient air results in a mixture reaching saturation with

respect to water. However, Busen and Schumann [1995] observed contrails at ambient

temperatures well above the Appleman's threshold temperature. They explained this

discrepancy by considering a fraction of combustion heat transformed to the trailing

vortex system in the form of kinetic energy. They identified this fraction with the

overall propulsion efficiency of the aircraft, i.e., the fraction of combustion heat that



is convertedinto work to propel the aircraft

7O

71= FV/(QrhF), (4.64)

where F is the thrust, V is the airspeed, Q is the specific combustion heat, and rhF is

the fuel flow rate. Hence, the exhaust gases contain only (1 - rl)Q of heat per mass of

fuel instead of all the heat assumed by Appleman [1953]. Consequently, the threshold

temperature for contrail formation is higher than that if the exhaust gases are assumed

to receive all the combustion heat directly. The overall propulsion efficiencies, rl,

for modern bypass turbofan engines is usually higher than those for older turbojet

engines or turbofan engines with low bypass ratio. The kinetic energy of the jet plume

is shown by Schumann [1996] to have very little impact on the threshold temperature

although the kinetic energy of the trailing vortex system induced by the aircraft is

important. Hence it is justified to assume a stagnant plume when calculating the

threshold criterion for contrail formation.

Figure 4.2 illustrates schematically how the threshold ambient temperature can be

determined in a partial water pressure versus temperature diagram. Saturated states

corresponding to liquid water and ice are denoted by P, at,liq and P, at,ice, respectively.

Mixing of the aircraft exhaust with ambient air follows along the line connecting the

state of the exhaust gas at engine exit and that in the ambient air. The coordinate

corresponding to the condition at the engine nozzle exit is (Tczzt, xH2o,ezltPa) where Pa

is the ambient total pressure, which is on the far right upper corner outside the range

plotted. The ambient condition corresponds to the point (Ta, RHa • P, at(Ta)) where
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RH stands for relative humidity and the subsript a denotes the ambient condition.

Visible contrails form when the the plume reaches supersaturation with respect to

water [Jenson et al., 1998]. In Figure 4.2, this corresponds to the conditions when the

mixing line crosses the saturation curve with respect to liquid water, P, at,_q (given

by equation (4.59)). Thus the threshold condition is defined as the situation when

the mixing line is tangent to the liquid saturation curve. Also plotted in the figure

is the saturation vapor pressure with respect to ice, Ps,u,,,:e(T) which is given by

In Ps_,t,lce = 24.313 - 6146.8/T [Tabazadeh et al., 1997].

The gradient of the mixing line is approximated by [Schumann, 1996]

G "- EIH_o_Pa
eQ(1 - r/) ' (4.65)

where E = MH2o/Ma,. = 0.622. The temperature at the tangent point TLM can be

calculated through

dP, at(TLM) = G. (4.66)
dT

Equation (4.66) is nonlinear and it can be solved for TLM through Newton's iteration.

A good guess to initiate the iteration is given by [Schumann, 1996]

TLM -- -46.46+ 9.431n(G - 0.053) + 0.720[ln(G - 0.053)] 2 + 273.15, (4.67)

where T is in unit K and G in is unit Pa/K. From the definition of the ambient

relative humidity RHa and that of the gradient of the mixing line, the threshold

ambient temperature for contrail formation is determined by

TLC = TLM --[P_at(TLM)- Rga " P_at(TLc)]/G. (4.68)
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Equation (4.68) is also an implicit equation which requiresNewton's iteration. TLM

is a good initial guess to start the iteration. Contrails are expected to form when the

ambient temperature is less than TLc, for example, the temperature at point A as

illustrated in Figure 4.2. The threshold ambient temperature can also be determined

by the ice saturation state as denoted by Ttc. As the specific volume increases when

liquid water freezes, the saturation pressure of ice is higher than that of liquid water;

consequently, Tzc > TLC.

In-situ measurements of the ambient temperature and humidity made by Schu-

mann et al. [1996] and by Jensen et al. [1998] during the SUCCESS experiment

suggest that liquid saturation in the plume is required for visible contrail formation.

The fact that the ambient temperature needs to be below TLC may indicate that liq-

uid water droplets must be activated and subsequently freeze in order to generate a

sufficient number of ice crystals for a visible contrail. According to the above in-situ

observations, visible contrails do not form when TLC < T < Tic. In this temperature

range, the number of ice crystals nucleated may be too low to form ice contrails that

are visible.

In this thesis work, the formation of ice particles by freezing and their subse-

quent evolution are not modeled. This is justified for situations when contrails are

not formed, i.e., when ambient temperature is above the threshold ambient tempera-

ture. The present analysis also sets a stage for further research on ice particles when

contrails are formed.
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4.5.1 Aerosol evolution

Figure 4.3 depicts the predicted temperature profile as a function of the axial

distance x and the jet radius r. The initial distribution is characterized by a hot,

isothermal core and a somewhat colder bypass region. At the nozzle exit plane the

initial values over the core and the bypass cross sections are assumed to be uniform.

The inner bypass zone is heated up due to mixing of heat out of the core in the very

near field. The plume temperature decays within the mixing region as the ambient

air is entrained into the plume.

Figure 4.4 presents the profile of soot emitted by the engine and transported as

a passive tracer in the jet flow field. We assume that there is no soot present in

the ambient air. The initial profile of the exhaust particulates decays, similar to the

trend of the temperature, but a strong perturbation of the background atmosphere

with respect to soot is observed, even at the simulated plume length of x -- 1 km.

Figure 4.5 shows the homogeneous nucleation rate along the plume axis. The

present modeling results reveal that the typical germ radii are 0.3nm with 1.5 sulfuric

acid and 3 water molecules per germ on average. The freshly nucleated acid aerosols

have H2SO4 weight fractions ranging from 0.7-0.8 depending on germ radius. The

nucleation rate reaches its maximum by 100 m from the exit plane , and then it

plummets as gaseous H2SO4 is depleted.
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Figure 4.6 depicts the evolution of number densities of H2SO4-H20 aerosols, soot

particles, and soot coated with H2SO4-H20 along the plume axis with and without

coagulation effects. High levels of volatile H2SO4-H20 droplets are predicted by 100

m past the nozzle exit. After reaching its maximum, the amount of volatile droplets

decreases due to both dilution and coagulation as manifested in the figure. The

predicted number densities of bare soot and soot coated with H2SO4-H20 coincide

with those of mixed soot without coagulation effects. This suggests that we can

combine the bare soot and those coated with H2SO4-H20 into one parameter to

save computing time. Here the generation path of H2SO4-H20 coated soot particles

through adsorption is neglected.

Figure 4.7 shows the mixing ratio of gaseous sulfur species and H2SO4-H20 aerosols.

It clearly shows that the binary homogeneous nucleation effectively removes H2SO4

species from the gas phase. By the time of 1 second (c.f. Figure 3.10), the gas-phase

H2SO4 species is almost depleted. It indicates that any SOs that is oxidized to SO3

and subsequently to sulfuric acid (H2SO4) would form new small aerosols in the first

second after emission. This estimate is comparable with the simulation results by

Miake-Lye et al. [1994] and K_ircher [1996], and is also consistent with the prediction

of < 1.6 sec by Arnold et al.'s [1998] measurements.
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4.5.2 Soot Activation

Figure 4.8 shows the time evolution of the average surface coverage of sulfur

species on soot particles along the plume axis. Prior to the onset of homogeneous bi-

nary nucleation, adsorption dominates. This process can be viewed as prompt binary

heterogeneous nucleation of H2SO4 and H20 on the surface. After homogeneous bi-

nary nucleation, gaseous H2SO4 is depleted and the scavenging dominates the surface

activation.

4.5.3 Effects of sulfur emission from engine

To explore the effect of SOx emissions at the exhaust exit on the formation, growth,

and chemical processing of near field aerosols, parametric studies are performed. Since

direct measurements of the level of S(VI) (SO3 and H2SO4) at the exhaust exit have

not been reported, the percentage conversion of fuel sulfur into SO3 in the engine

was varied between 2% and 20%. This range encompasses both Brown et al's [1996b]

model estimates for the Concord and a smaller subsonic engine as well as experimental

measurements of gas turbine exhausts [Hunter, 1982; Harris, 1990].

Figure 4.9 presents the maximum conversion efficiency of emitted SOz to H2SO4

along the plume axis versus percentage conversion of fuel sulfur to SO3 in the engine.

[S03]o/[S0_.]o is used as a free parameter since direct measurements of SO3 at the

engine exit are not available. The subscript 0 indicates initial plume concentration

at the nozzle exit plane. For low levels of S03 emission with [S03]o/[SOx]o < 1%,
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[H2SO4]m_/[SOx]odependsstrongly on [OH]o,becauseSO3levelsproducedvia SO2

+ OH are greater than or at least similar to [SOa]o. Limited by the SO2 + OH

reaction rate, [H2SO4]m,.,,/[SO=]ois boundedbetween0.1%and 2% for [OH]o levels

between0.1ppmvand 10ppmv. Direct emissionof H2SO, could enhancethis limit.

However,when [SO3]o/[SOx]o> 1°/o,[H2SO4]max/[SOz]oincreasesdramatically be-

causethe fast SO3+ H20 reaction produces H2SO4 directly, bypassing the slower

SO: 4- OH reaction pathway and eliminating the [OH]o dependence. Direct emission

of H:SO4 and possible heterogeneous losses of SO3 and H2SO4 due to adsorption on

soot particles were not considered here. The computed conversion range is consistent

with the estimated value of > 0.4% based on measurements by Frenzel and Arnold

[1994].

Figure 4.10 shows the accumulative number densities (as would be detected by

a condensation nucleus counter) of volatile H2SO4-H2O aerosols with radius greater

than 3.5 nm along the jet plume axis. Profiles are shown assuming that 2_, 5_0, 10%,

and 20% of the fuel sulfur is converted to SO3 in the engine. The predicted cumulative

number density of volatile aerosols is shown to increase with the SO3 emission. As

more SOa is emitted from the nozzle exit, more gas-phase H2804 is produced as shown

in Figure 4.9. This leads to higher peak homogeneous binary nucleation rates and

therefore more volatile H2SO4-H20 embryos are generated in the early jet regime.

Elevated levels of gaseous H2SO4 also promote the condensation process which causes

volatile acid droplets to grow into larger size. This is reflected in the earlier and
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sharperriseof the averageaerosolradiusfor higherSOzemissionasdepictedin Figure

4.11. The average radius of aerosols is defined as r_,_e = _¢/Av,tot/(Nv,tot" 4r), where

A_,tot and N_,tot are the total surface area and number density of volatile particles in

a grid, respectively. When all the SOx emitted from nozzle are in the form of SO2,

the cumulative number densities are too small to be shown in Figure 4.10. In the late

stage of the jet plume the evolution of number densities are shown to be dominated

by dilution.

In Figure 4.12, the evolution of relative humidity (RH) along the plume axis is

illustrated. The relative humidity first increases due to rapid temperature decrease

caused by the entrainment of cold ambient air. The water vapor reaches supersatura-

tion at about 100 m after exit. The level of water vapor supersaturation achieves its

maximum by 250 m, then it falls off due to condensation of water vapor onto aerosols

until RH ._ 100%. Hereafter, particles begin to evaporate water due to entrainment.

The net effect is that RH decreases slightly. With higher conversion of fuel sulfur to

oxidized sulfur in the engine, more and larger volatile aerosols are generated leading

to higher levels of surface area density to be presented in Figure 4.13. Hence en-

hanced condensation due to larger surface area available causes RH to decrease to

100% sooner as depicted in Figure 4.12.

A natural and important consequence of the generation of high number density of

volatile H2SO4-H20 aerosols is a significant increase in aerosol surface area density.

Figure 4.13 presents the volatile aerosol surface area density along the plume axis
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for the conditions with 0, 2 %, 5%, 10%,and 20% emissionof SOx as SO3 at the

exhaust exit. Homogeneous binary nucleation first causes a marked increase of surface

area density of volatile acid aerosols. After reaching its maximum at about 50 m,

nucleation is slowed down, and surface area density is decreased by coagulation. Once

the plume becomes supersaturated with respect to water, the surface area increases

due to rapid water condensation on droplets with radii larger than nanometer size.

After the plume relative humidity decreases to about 100 %, condensation ceases and

the surface area density decreases which is dominated by plume dilution and aerosol

coagulation. When SOa emission is zero at the nozzle exit, the limited amount of

H2SO4 is depleted by adsorption and homogeneous binary nucleation before the plume

becomes saturated. The sizes of volatile aerosols stay small and water uptake will not

be important due to the Kelvin barrier. Hence the surface area does not exhibit a

second increase period which is caused by water condensation. For higher percentage

emission of SOx as SO3, more H2SO4 is generated, which leads to higher homogeneous

binary nucleation rate and thus generates more volatile acid aerosols. This results

in larger increase in surface area early in the plume. Higher levels of gas phase

H2SO4 also enhance H2SO4 condensation and accordingly induce more H20 uptake,

which makes particles grow into larger size as manifested in Figure 4.11. Therefore

a second increase period becomes more profound with higher levels of SOa emission

from the nozzle exit. The computed surface area density levels are in the range of

O(103)-O(105) pm2cm -a which are consistent with the predictions by K/ircher [1996].
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As shownin Figure 4.14, the level of chemical activation of soot particles increases

as fuel sulfur conversion to SO3 in the engine increases. When the exhaust from the

nozzle exit contains no SO3, 6 is about 0.3 at the end of jet plume regime. If 2% of

fuel sulfur is converted to SO3 in the engine, 0 would get to nearly 0.8 at the end of

jet. When the conversion fraction is > 5%, 8 reaches nearly 1.

In the near-field jet plume, the computed results indicate that only 1%-5% of

exhaust SO3 is adsorbed on soot during the time required for chemical buildup of

maximum H_SO4 (10 ms) in the gas phase for the range of SO3 emission studied

here. Hence the adsorption of SO3 is not a limit to its gas-phase chemical conversion

to H2SO4. The H2SO4 generated in the gas phase is adsorbed by soot until the

depletion of available H_SO4 by homogeneous binary nucleation and condensation

around a plume age of 0.1 sec. The model results show that approximately 3%-25%

of the chemically produced H2SO4 is adsorbed by soots. Hence we can conclude that

H2SO4 is the major species adsorbed on soot particles compared to the adsorption

of SO3 on soot. However, the amount of H2SO4 adsorbed on soot particles is still

relatively small and it will not limit the H2SO4-H_O binary homogeneous nucleation

and H2SO4 condensation.

Based on simulation of combustion chemistry, Brown et al. [1996b] concluded that

the conversion fraction of fuel sulfur to S(VI) (SO3+H2SO4) does not scale linearly

with fuel sulfur content (FSC). The conversion is lower for higher FSC.
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4.5.4 Threshold temperature for contrail formation

Jet-A 1 fuel is a standard aviation kerosene with hydrogen mass fraction of mH =0.14

and specific combustion heat of Q = 43 x 106 J/kg [Schumann, 1996]. For a B747 air-

craft burning kerosene with a thrust F = 31.1 x 103 N per engine [Schumann, 1996],

a fuel flow rate rh = 0.785 kg/s, and the air velocity V = 237 m/s, the propulsion effi-

ciency and the H20 emission index are estimated to be rl = 0.216 and EIH_o -- 1.25,

respectively. With the ambient pressure P_ = 0.2361 atm and relative humidity

RH, = 30%, we compute the threshold ambient temperature TLC to be 221.51 K.

For a higher ambient relative humidity RHa = 50%, TLC=222.48 K. As expected,

ambient air with higher relative humidity facilitates contrail formation. For rl = 0

and RH = 50%, TLC is 220.19 K which is about 2 K smaller than the situation with

= 0.216. Hence, the Appleman's criterion would give lower threshold temperatures

since it did not consider the conversion of combustion heat into kinetic energy in the

wake vortex regime.

Given the overall propulsion efficiency of an aircraft and the type of fuel burnt, the

threshold temperature turns out to be a function of ambient relative humidity and

pressure (altitude), as seen from equations (4.65), (4.66), and (4.68). In Figure 4.15,

the computed threshold temperature for contrail formation is plotted versus ambient

pressure for ambient relative humidities of 0, 50, and 100%. The propulsion efficiency

rl is specified to be 0.3, which is the approximate value for modern commercial jet

engines. It clearly indicates that contrails tend to form at higher ambient pressure or



81

higher relative humidity. The threshold temperature is seensensitiveto the aircraft

propulsionefficiency,and contrails tend to form at a higher propulsionefficiency.
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Figure 4.1: Schematic of the partial molar volume, _, of a two-component mixture.

_1 and _2 are the partial molar volume of component 1 and 2, respectively.
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Figure 4.2: Schematic showing threshold condition for contrail formation. It shows the

curve of the liquid water saturation pressure P,,,,_iq(T) and ice saturation pressure

P,=t.i_(T) versus temperature and the mixing lines. TLc is the threshold ambient

temperature for contrail formation.
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Figure 4.3: Spatial distribution of temperature in the flow field of a B747jet engine.
The radial distance,r, and the downstreamdistance,x, are in unit m.
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l

Figure 4.4: Spatial distribution of the total number density of soot particles in the

flow field of a B747 jet engine. The radial distance, r, and the downstream distance,

x, are in unit m.
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Figure 4.5: Homogeneous H2SO4-H20 nucleation rates along the jet plume axis.
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Figure 4.6: Number densities of volatile H2SO4-H20 droplets, soot particles, and soot

coated with H2SO4-H20 versus downstream distance with and without coagulation
effects.
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Figure 4.7: Mixing ratio of gaseous sulfur species and sulfate aerosols versus down-

stream distance. The homogeneous nucleation rate Jh,,m in unit of ppmv/sec is also

shown. Dashed line represents the evolution of gaseous H2SO4 species when nucle-

ation is included as compared to the pure dilution (solid line).
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Figure 4.8: Average surface coverage of oxidized sulfur species for a soot versus plume

age. It is composed of coverage by adsorption of gaseous H2SO4 and by scavenging

of volatile H2SO4-H20 aerosols.
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Figure 4.9: Maximum conversion efficiency of emitted SOz to H2SO4 at axis versus

percentage of fuel sulfur conversion to SO3 in the engine. Subscript 0 indicates initial

plume concentration.
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Figure 4.10: Cumulative number densities of volatile H2SO4-H20 aerosols with radius

greater than 3.5 nm along the jet plume axis, assuming that 2%, 5%, 10%, and 20%

of the fuel sulfur is converted to SO3 in the engine.
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Figure 4.11: Average radius of volatile acid aerosols along the jet plume axis with 0,

2%, 5%, 10%, and 20% of the fuel sulfur converted to SO3 in the engine.
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Figure 4.12: The evolution of relative humidity along the plume axis. Profiles are

shown assuming 0, 2%, 5%, 10%, and 20% of the fuel sulfur is converted to SO3 in

the engine.
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Figure 4.13: Volatile H2SOI-H20 aerosol total surface area density along the jet

plume axis. Profiles are shown assuming 0, 2%, 5%, 10%, and 20% of the fuel sulfur

is converted to SO3 in the engine.
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Figure 4.14: Surface average coverage of a soot particle along the plume axis with 0,

2%, 5%, 10%, and 20% of the fuel sulfur converted to SO3 in the engine.
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Figure 4.15: Threshold temperature for contrail formation versus ambient pressure

for ambient relative humidities (RH) of 0, 50, and 100%. Contrails are predicted to

form when the ambient temperature is below the curve. Threshold temperatures are

also shown for an engine propulsion efficiency of 0.2 and 0.4.
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Chapter 5

Conclusions

A detailed chemical mechanism between aircraft exhaust and ambient air in near-

field jet plumes is compiled. The dominant oxidation kinetic pathways are identified

through sensitivity analysis of major species with respect to gas phase reaction steps.

The spatial distributions of major chemical species in the near-field jet plume are com-

puted and analyzed. The potential impact of subgrid turbulent mixing on chemistry

is investigated and found to be of negligible importance.

In the vortex regime of the wake, large eddy simulations (LES) may be required

to track the highly three-dimensional fluid dynamics. The expensive computation

on fluid dynamics makes it impossible to incorporate detailed chemistry. A reduced

mechanism is therefore required. An eight-step reduced mechanism is developed which

captures the major chemical pathways in the near-field jet plume. Results obtained

with the reduced chemistry show good agreement with those predicted by the detailed
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chemistry. However,using the eight-step reduced chemistry has cut down computer

CPU time by a factor of more than 3.5 for the near-field simulation.

A comprehensive aerosol model is developed to simulate microphysical processes

including sulfuric acid and water binary homogeneous nucleation, aerosol coagulation,

non-equilibrium heteromolecular condensation, and sulfur-induced soot activation as

water condensation nuclei. These microphysical processes are coupled with gas-phase

chemistry and axisymmetric turbulent jet flow.

The modeling results indicate that a large number of subnanometer-sized volatile

H2SO4-H20 embryos are generated in the near-field plume. These embryos grow

in size by condensation in the early jet regime and by self coagulation later. Soot

particles can be activated into water condensation nuclei in the jet plume for possible

contrail formation through both heterogeneous nucleation and scavenging of volatile

H2SO4-H20 aerosols.

The gas phase conversion of SO2 to H2SO4 is controlled by OH driven oxidation

and it is limited to less than 1%. However, the amount of H_SO4 produced will in-

crease via fast reaction of SO3 with HzO directly if SO3 emission due to fuel sulfur

oxidation to SO3 in the engine is considered. Higher levels of H2SO4 in turn result in

more sulfate aerosol embryos formed in the early jet stage, and also enhance conden-

sation of H2SO4 and H20 onto the sulfate aerosols in this regime. Consequently, SO3

emission from the engine nozzle exit increases the cumulative number density and

surface area density of volatile sulfate aerosols. SO3 emission also promotes chemical
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activation of soot particles with enhancedacid coating. This suggeststhe needfor

measurementsof the partitioning of sulfur species(SO2and SO3)at the exhaustexit.

The thresholdcondition for ice contrail formation behind an aircraft dependson

the ambientpressure,the ambientrelative humidity, the overall propulsionefficiency

of the aircraft, and the fuel propertiessuchas the fuel hydrogen massfraction and

the specificcombustionheat. Higher valuesof ambientrelative humidity or pressure

facilitate contrail formation. The threshold temperature is found sensitive to the

overall propulsionefficiencyof the aircraft.

The prediction of particle and speciesdistribution in the near-field plume can

serveasinput for the follow-onlarger-scalemodel. The presentwork alsoprovidesan

estimateof the aerosolsurfaceareadensityfor subsequentevaluationof heterogeneous

oxidation mechanismsin the wake.
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